Transverse corner cracks were observed frequently in Nb containing steel slabs produced by a vertical bending type slab caster. The hot ductility of the steel was measured with a hot tensile test, and the result indicated that the temperature at the slab corner fell into the embrittlement temperature range which resulted in the cracking problem. To ensure that the temperature of the slab was uniformly above the embrittlement temperature range during the straightening process, asymmetric secondary cooling nozzles have been implemented on the caster. After this modification, the temperature of the slab corner during the unbending operation was increased to above the embrittlement temperature range of the Nb bearing steel, and the incidence of transverse corner cracks was greatly reduced.
Controlling the formation of longitudinal cracks on hypo-peritectic steel slab surfaces is one of the key challenges in continuous casting worldwide. Based on the production in Chongqing Iron & Steel Co., mould fluxes with high basicity ranging from 1.7 to 1.8 were put forward and the effects of compositions on the basic properties of mould flux were studied in the present paper.After laboratory experiments, a high-basicity mould flux with an increased crystallisation speed to abate the heat-transfer capability in the meniscus area was fully applied in the first steelmaking plant of Chongqing Iron & Steel Co. Using the high-basicity mould flux, for more than 3 million tonnes of slab production, the large longitudinal crack was eliminated and the rate of formation of small longitudinal cracks decreased greatly. During the production process, sticking that impedes the smooth running of continuous casting was infrequent, and the spot check for longitudinal cracks on micro alloy steel surface was simplified in the slab finishing process. Furthermore, since the application effect of mass production is remarkable, the hot charging process is better implemented, and the contract can be accomplished in time. In summary, the problem of longitudinal cracks on hypo-peritectic steel slab surfaces is finally resolved and the high-basicity mould fluxes have become indispensable auxiliary materials during continuous casting of hypo-peritectic steel.
This work conducted systematic studies on the effect of B on the hot ductility behavior of Fe-36Ni alloy over the temperature range of 900–1,200 °C by use of Gleeble-3500 thermal simulator, Thermo-Calc software, transmission electron microscopy and secondary ion mass spectroscopy. The influencing factors and mechanisms are also discussed in the present work. Results show that all the values of area reduction of the investigated alloy samples are below 60 % in the temperature range of 900–1,000 °C, indicating the poor hot ductility of the investigated alloys in this temperature range. When the grain boundary sliding occurs during the hot tensile processes, the fine secondary phase particles at grain boundaries prevent the occurrence of dynamic recrystallization and promote the nucleation and propagation of cracking simultaneously, resulting in the poor hot ductility of the investigated alloys in this temperature range. In the B bearing alloy, the segregation of B atoms around austenite grain boundaries promotes the solute dragging effects at grain boundaries and strongly inhibits the occurrence of dynamic recrystallization, which increases the brittle temperature to 1,000 °C. When the temperature exceeds 1,050 °C, the occurrence of dynamic recrystallization improves the hot ductility significantly. However, the coarsening of recrystallized grains and the formation of inter dendritic cracks decrease the hot ductility of the alloy gradually when the temperature increases from 1,100 °C to 1,200 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.