Background There are many unclear points regarding local structural characteristics of the bone surrounding the implant reflecting the mechanical environment. Purpose The purpose of this study is to quantitatively evaluate bone quality surrounding implants placed into the femurs of mice in an unloading model, and to determine the influence of the mechanical environment on bone quality. Methods Twenty 12-week-old male C57BL6/NcL mice (n = 5/group) were used as experimental animals. The mice were divided into two groups: the experimental group (n = 10) which were reared by tail suspension, and the control group (n = 10) which were reared normally. An implant was placed into the femur of a tail-suspended mouse, and after the healing period, they were sacrificed and the femur was removed. After micro-CT imaging, Villanueva osteochrome bone stain was performed. It was embedded in unsaturated polyester resin. The polymerized block was sliced passing through the center of the implant body. Next, 100-μm-thick polished specimens were prepared with water-resistant abrasive paper. In addition to histological observation, morphometric evaluation of cancellous bone was performed, and the anisotropy of collagen fibers and biological apatite (BAp) crystals was analyzed. Results As a result, the femoral cortical bone thickness and new peri-implant bone mass showed low values in the tail suspension group. The uniaxial preferential orientation of BAp c-axis in the femoral long axis direction in the non-implant groups, but biaxial preferential orientation of BAp c-axis along the long axis of implant and femoral long axis direction were confirmed in new bone reconstructed by implant placement. Collagen fiber running anisotropy and orientation of BAp c-axis in the bone surrounding the implant were not significantly different due to tail suspension. Conclusions From the above results, it was clarified that bone formation occurs surrounding the implant even under extremely low load conditions, and bone microstructure and bone quality adapted to the new mechanical environment are acquired.
Surface modifications of implants can improve the rate of osseointegration. The aim of this study was to determine the effect of super-hydrophilic modification on tetragonal zirconia polycrystals (TZP) implant surface and its subsequent effect on the rate of osseointegration. The TZP implants were rendered super-hydrophilic by the use of ultraviolet light (UV) or via atmospheric-pressure plasma treatments (PL), on their surface and were compared to control specimen that any surface modification wasn't performed (NC). According to the surface wettability and x-ray photoelectron spectroscopy (XPS) analysis, the contact angle of water droplets on the surface of UV and PL was 0 degree, and their C1s peak was less than that of NC. The push-in test and histological analysis revealed that the super-hydrophilic modification enhanced the bone-implant integration and the formation of new bone around the TZP implants. Additionally, carbon removal and surface wettability enhancement likely improved the osseointegration rate. The study, therefore, demonstrates the design of future TZP implants, particularly for dental applications.
The purpose of this study was to investigate the process and derivation of the distribution of the sensory nerves that appear in the extraction socket and surrounding alveolar bone following tooth extraction. The right mandibular first molar of rats and periodontal ligament were extracted as a single mass, and the mandible was harvested after days 1, 3, 5, and 7 after extraction. Serial sections of 7 µm thickness were prepared for the proximal root (Section A), buccolingual root (Section B), and centrifugal root (Section C) of the first molar. H–E staining and immunohistochemical staining with anti-S100 antibody and anti-NF-L antibody were carried out. The presence of nerve fiber bundles in the blood clot was already evident on post-extraction day 3, and on post-extraction day 7. On day 3, the number of axons in Sections B and C had greatly decreased, indicating that, after extraction, the connection between peripheral nerve tissue and the trigeminal ganglion was temporarily markedly reduced in the region of the alveolar branch. Although the myelin sheaths were regenerating on day 5, the majority of the axons of the alveolar branches extending from the inferior alveolar nerve were seen to be extremely thin and scattered, despite their further regeneration. The above results suggest that the newly myelinated nerves are actually derived from the bone marrow to the extraction socket, so few nerves, rather than being derived from the alveolar branches that had innervated the extracted tooth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.