Molybdenum disulfide (MoS), as a promising gas-sensing material, has gained intense interest because of its large surface-to-volume ratio, air stability, and various active sites for functionalization. However, MoS-based gas sensors still suffer from low sensitivity, slow response, and weak recovery at room temperature, especially for NO. Fabrication of heterostructures may be an effective way to modulate the intrinsic electronic properties of MoS nanosheets (NSs), thereby achieving high sensitivity and excellent recovery properties. In this work, we design a novel p-n hetero-nanostructure on MoS NSs using interface engineering via a simple wet chemical method. After surface modification with zinc oxide nanoparticles (ZnO NPs), the MoS/ZnO hetero-nanostructure is endowed with an excellent response (5 ppm nitrogen dioxide, 3050%), which is 11 times greater than that of pure MoS NSs. To the best of our knowledge, such a response value is much higher than the response values reported for MoS gas sensors. Moreover, the fabricated hetero-nanostructure also improves recoverability to more than 90%, which is rare for room-temperature gas sensors. Our optimal sensor also possesses the characteristics of an ultrafast response time of 40 s, a reliable long-term stability within 10 weeks, an excellent selectivity, and a low detection concentration of 50 ppb. The enhanced sensing performances of the MoS/ZnO hetero-nanostructure can be ascribed to unique 2D/0D hetero-nanostructures, synergistic effects, and p-n heterojunctions between ZnO NPs and MoS NSs. Such achievements of MoS/ZnO hetero-nanostructure sensors imply that it is possible to use this novel nanostructure in ultrasensitive sensor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.