Bone marrow-derived mesenchymal stem cells (BMSCs) have been suggested to possess the capacity to differentiate into different cell lineages. Maintaining a balanced stem cell differentiation program is crucial to the bone microenvironment and bone development. MicroRNAs (miRNAs) have played a critical role in regulating the differentiation of BMSCs into particular lineage. However, the role of miR-149-3p in the adipogenic and osteogenic differentiation of BMSCs has not been extensively discovered. In this study, we aimed to detect the expression levels of miR-149-3p during the differentiation of BMSCs and investigate whether miR-149-3p participated in the lineage choice of BMSCs or not. Compared with mimic-negative control (NC), miR-149-3p mimic decreased the adipogenic differentiation potential of BMSCs and increased the osteogenic differentiation potential. Further analysis revealed that overexpression of miR-149-3p repressed the expression of fat mass and obesity-associated (FTO) gene through binding to the 3ʹ UTR of the FTO mRNA. Also, the role of miR-149-3p mimic in inhibiting adipogenic lineage differentiation and potentiating osteogenic lineage differentiation was mainly through targeting FTO, which also played an important role in regulating body weight and fat mass. In addition, BMSCs treated with miR-149-3p anti-miRNA oligonucleotide (AMO) exhibited higher potential to differentiate into adipocytes and lower tendency to differentiate into osteoblasts compared with BMSCs transfected with NC. In summary, our results detected the effects of miR-149-3p in cell fate specification of BMSCs and revealed that miR-149-3p inhibited the adipogenic differentiation of BMSCs via a miR-149-3p/FTO regulatory axis. This study provided cellular and molecular insights into the observation that miR-149-3p was a prospective candidate gene for BMSC-based bone tissue engineering in treating osteoporosis.
Osteoporosis is closely associated with the dysfunction of bone metabolism, which is caused by the imbalance between new bone formation and bone resorption. Osteogenic differentiation plays a vital role in maintaining the balance of bone microenvironment. The present study investigated whether melatonin participated in the osteogenic commitment of bone marrow mesenchymal stem cells (BMSCs) and further explored its underlying mechanisms. Our data showed that melatonin exhibited the capacity of regulating osteogenic differentiation of BMSCs, which was blocked by its membrane receptor inhibitor luzindole. Further study demonstrated that the expression of miR‐92b‐5p was up‐regulated in BMSCs after administration of melatonin, and transfection of miR‐92b‐5p accelerated osteogenesis of BMSCs. In contrast, silence of miR‐92b‐5p inhibited the osteogenesis of BMSCs. The increase in osteoblast differentiation of BMSCs caused by melatonin was attenuated by miR‐92b‐5p AMO as well. Luciferase reporter assay, real‐time qPCR analysis and western blot analysis confirmed that miR‐92b‐5p was involved in osteogenesis by directly targeting intracellular adhesion molecule‐1 (ICAM‐1). Melatonin improved the expression of miR‐92b‐5p, which could regulate the differentiation of BMSCs into osteoblasts by targeting ICAM‐1. This study provided novel methods for treating osteoporosis.
Adult stem cells hold great promise for use in tissue repair and regeneration. Recently, adipose tissue-derived stem cells (ADSCs) were found to be an appealing alternative to bone marrow stem cells (BMSCs) for bone tissue engineering. The main benefit of ADSCs is that they can be easily and abundantly available from adipose tissue. However, our prior study discovered an important phenomenon that BMSCs have greater osteogenic potential than ADSCs in vitro and epigenetic regulation plays a critical role in runt-related transcription factor 2 (Runx2) expression and thus osteogenesis. In this study, we aimed to improve the osteogenic potential of ADSCs by histone deacetylase inhibitor sodium butyrate (NaBu). We found that NaBu promoted rat ADSC osteogenic differentiation by altering the epigenetic modifications on the Runx2 promoter.
Osteoporosis (OP) is a common bone metabolic disease, the process of which is fundamentally irreversible. Therefore, the investigation into osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs) will provide more clues for OP treatment. In the present study, we found that microRNA-187-5p (miR-187-5p) played a key role on osteoblastic differentiation, which was significantly upregulated during osteogenic differentiation of BMSCs in mice. Moreover, overexpression of miR-187-5p suppressed osteoblastic differentiation of BMSCs through increasing alkaline phosphatase (ALP), matrix mineralization, and levels of Osterix (OSX), and osteopontin (OPN) as well as runt-related transcription factor 2 (Runx2) in vitro. The results in vivo indicated that the upregulation of miR-187-5p enhanced the efficacy of new bone formation in the heterotopic bone formation assay. Luciferase reporter assay and western blot analysis revealed that miR-187-5p was involved in osteogenesis by targeting intracellular adhesion molecule 1 (ICAM-1). Furthermore, ICAM-1 silence inhibited osteoblastic differentiation of BMSCs. Taken together, our results suggested for the first time that miR-187-5p may promote osteogenesis by targeting ICAM-1, and provided a possible therapeutic target for bone metabolic diseases.
Theoretical calculations on interaction of the C20 fullerene (consists solely by pentagons) with the smallest amino acid (glycine) were carried out using density‐functional theory method. The glycine molecule energetically prefers to interact with the Top‐site on the C20 cage via its amino nitrogen (N) active site. The stable ordering of three active sites on glycine molecule is NH2‐site > O‐site > OH‐site. Moreover, when the Gd atom is encapsulated to the center of C20‐glycine, the cage volume obviously increase ∼24.8%; and the endohedral atom induces the generation of two strong bands in the partial density of states spectra, which could cause the effect on optical properties. Additionally, it is also found that the modified C20‐glycine derivative by Gd atom can reduce the thermodynamic and kinetic stabilities. It could be expected that the study may provide a theoretical reference in exploring their intrinsic feature structurally to antitumor activity. © 2012 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.