Aphids are serious agricultural insect pests which exploit the phloem sap of host plants and thus transmit pathogens to their hosts. However, the degree to which aphid parsitism affects the fitness of the host plants is not well understood. The aphid, Macrosiphoniella yomogicola, parasitizes the mugwort Artemisia montana in Japan. During summer most mugworts carry aphids, but most aphid colonies die out after the budding of A. montana inflorescences in late summer. A few aphid colonies survive to late autumn, at which point sexuparae appear to later lay overwintering eggs after copulation. The death of the aphid colonies seems to be caused by biochemical changes in the phloem sap in the host plant coincident with the budding of inflorescences. The surviving aphid colonies may suppress the budding of inflorescences to allow persistence of their genetic line into the following year. Our investigations demonstrate that aphid parasitism did not affect host plant growth, but that it did significantly decrease the number of inflorescences and the average weight of floral buds. Our results indicate that aphid parasitism has a strong negative effect on the fitness of host plants. The manner in which the aphids suppress floral budding in their hosts is worth examining from the perspective of the evolution of aphid-plant interactions.
The study of collective decision-making spans various fields such as brain and behavioural sciences, economics, management sciences, and artificial intelligence. Despite these interdisciplinary applications, little is known regarding how a group of simple ‘yes/no’ units, such as neurons in the brain, can select the best option among multiple options. One prerequisite for achieving such correct choices by the brain is correct evaluation of relative option quality, which enables a collective decision maker to efficiently choose the best option. Here, we applied a sensory discrimination mechanism using yes/no units with differential thresholds to a model for making a collective choice among multiple options. The performance corresponding to the correct choice was shown to be affected by various parameters. High performance can be achieved by tuning the threshold distribution with the options’ quality distribution. The number of yes/no units allocated to each option and its variability profoundly affects performance. When this variability is large, a quorum decision becomes superior to a majority decision under some conditions. The general features of this collective decision-making by a group of simple yes/no units revealed in this study suggest that this mechanism may be useful in applications across various fields.
Benefits of grouping, not the Hamilton’s relatedness asymmetry benefit, mainly drive the evolution of eusociality in a bee.
Phenotypic variations are observed in most organisms, but their significance is not always known. The phenotypic variations observed in social insects are exceptions. Genetically based response threshold variances have been identified among workers and are thought to play several important adaptive roles in social life, e.g. allocating tasks among workers according to demand, promoting the sustainability of the colony and forming the basis of rationality in collective decision-making. Several parthenogenetic ants produce clonal workers and new queens by asexual reproduction. It is not clearly known whether such genetically equivalent workers show phenotypic variations. Here, we demonstrate that clonal workers of the parthenogenetic ant Strumigenys membranifera show large threshold variances among clonal workers. A multi-locus genetic marker confirmed that colony members are genetic clones, but they showed variations in their sucrose response thresholds. We examined the changing pattern of the thresholds over time generating hypotheses regarding the mechanism underlying the observed phenotypic variations. The results support the hypothesis that epigenetic modifications that occur after eclosion into the adult form are the cause of the phenotypic variations in this asexual species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.