Abstract. Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide “out-of-sample” evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (δ18O, δ13C) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data. The compiled data are available at https://doi.org/10.17864/1947.147.
Abstract. Characterizing the temporal uncertainty in palaeoclimate records is crucial for analysing past climate change, correlating climate events between records, assessing climate periodicities, identifying potential triggers and evaluating climate model simulations. The first global compilation of speleothem isotope records by the SISAL (Speleothem Isotope Synthesis and Analysis) working group showed that age model uncertainties are not systematically reported in the published literature, and these are only available for a limited number of records (ca. 15 %, n=107/691). To improve the usefulness of the SISAL database, we have (i) improved the database's spatio-temporal coverage and (ii) created new chronologies using seven different approaches for age–depth modelling. We have applied these alternative chronologies to the records from the first version of the SISAL database (SISALv1) and to new records compiled since the release of SISALv1. This paper documents the necessary changes in the structure of the SISAL database to accommodate the inclusion of the new age models and their uncertainties as well as the expansion of the database to include new records and the quality-control measures applied. This paper also documents the age–depth model approaches used to calculate the new chronologies. The updated version of the SISAL database (SISALv2) contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including age–depth temporal uncertainties for 512 speleothems. SISALv2 is available at https://doi.org/10.17864/1947.256 (Comas-Bru et al., 2020a).
<p>Climate- and environmental-proxy time series obtained from different archives, such as speleothems, allowed for major leaps in the understanding of past climate and environmental dynamics. However, age uncertainties that arise from the applied dating techniques and from the proxy sampling methodologies, respectively, are often neglected. These age uncertainties are important when leads and lags between different proxy time series are examined or if the relationship to climate-forcing is investigated. This is most pronounced when examining data that detail events of sub-centennial down sub-annual resolution, where noise is not smoothed by a low resolution sampling (e.g. conventional dental drill), or in records karst systems where the noise is inherently high (e.g. water-limited environments).</p> <p>We explore the use of dynamic time warping with a hierarchical aggregation layer (or HDTW) on multiple trajectories to generate an indexing table for the input samples. We hypothesize that this aggregation process results a temporally aligned references table (of the original trajectories) and allows for an analytical space to investigate and distinguish between local and non-local phenomena. We aim to compare sample derived features, such as peaks in trace element, organic fluorescence analyses and potentially &#948;<sup>18</sup>O (not tested here), on the derived analytical space, for the purpose of enabling a robust and simplified approach to multi-sample age modelling.</p> <p>We show HDTW compatibility to existing peak-counting methodologies applied on laser-ablation trace element analysis and confocal fluoresce laser microscopy. As a case study, we use HDTW on three published micron-scale elemental measurements of samples from Mediterranean climates with strong dry summer &#8211; wet winter seasonality - two from south-western Australia (Nagra et al., 2017) and one from the Soreq Cave in the Eastern Mediterranean (Orland et al., 2014). The HDTW continuous space for these samples yields results that are within the published age constraints, without the need to stack multiple traverses and manually account for double or missing peaks.</p> <p>HDTW is an important new tool for locating and identifying local and non-local phenomena in micron scale measurements (e.g. parallel laser ablation trace element traverses) by automatically aligning several coeval time axes of similar proxies. In the future HDTW could be applied for regional scale investigation (e.g. a coeval speleothems from a single cave or the same region, multiple cores from a single lake) allowing the unbiased fine-tuning between different environmental archives registering similar forcing mechanisms.</p> <p>Nagra, G., Treble, P.C., Andersen, M.S., Bajo, P., Hellstrom, J.C., Baker, A., 2017. Dating stalagmites in Mediterranean climates using annual trace element cycles. Sci. Rep. 7, 621.</p> <p>Orland, I.J., Burstyn, Y., Bar-Matthews, M., Kozdon, R., Ayalon, A., Matthews, A., Valley, J.W., 2014. Seasonal climate signals (1990&#8211;2008) in a modern Soreq Cave stalagmite as revealed by high-resolution geochemical analysis. Chem. Geol. 363, 322&#8211;333.</p>
Abstract. Characterising the temporal uncertainty in palaeoclimate records is crucial for analysing past climate change, for correlating climate events between records, for assessing climate periodicities, identifying potential triggers, and to evaluate climate model simulations. The first global compilation of speleothem isotope records by the SISAL (Speleothem Isotope Synthesis and Analysis) Working Group showed that age-model uncertainties are not systematically reported in the published literature and these are only available for a limited number of records (ca. 15 %, n = 107/691). To improve the usefulness of the SISAL database, we have (i) improved the database’s spatio-temporal coverage and (ii) created new chronologies using seven different approaches for age-depth modelling. We have applied these alternative chronologies to the records from the first version of the SISAL database (SISALv1) and to new records compiled since the release of SISALv1. This paper documents the necessary changes in the structure of the SISAL database to accommodate the inclusion of the new age-models and their uncertainties as well as the expansion of the database to include new records and the quality-control measures applied. This paper also documents the age-depth model approaches used to calculate the new chronologies. The updated version of the SISAL database (SISALv2) contains isotopic data from 691 speleothem records from 294 cave sites and new age-depth models, including age-depth temporal uncertainties for 512 speleothems. SISALv2 is available at https://doi.org/10.17864/1947.242 (Comas-Bru et al., 2020).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.