Photosynthesis performance can be assessed quantitatively with light response curves. These curves record the Electron Transport Rate (ETR) as a function of light intensity. Then, statistical fit on these curves parameterize light use efficiency, maximum photosynthetic activity and the reaction of the apparatus to stress. While this technique is performed with portable fluorometers in field conditions, it is difficult to scale it to the canopy level. The Fraunhofer line discrimination technique, which detects fluorescence signals emitted during photosynthesis, is a promising method to assess photosynthetic performance of canopies. In this study, we define a remote sensing ETR index based on a combination of three parameters: sun-induced fluorescence, normalized differential vegetation index and light intensity. Two representatives of C3 and C4 photosynthesis, L. sativa and Z. mays, experienced a fertilization concentrations gradient. ETR increased with light intensity in both crops. In L. sativa, ETR assumed a linear relationship between the photosynthetic activity and light intensity, with a correlation of R2 = 0.99 to the portable fluorometer. Additional parametrization revealed a resilience of its reaction centers to photoinhibition in maximum light intensities. When Z. mays experienced open field conditions, ETR correlated with the plant’s status. While the results of this study are promising, the index still requires validation in terms of temporal track and spatial variability.
A very effective removal of nitrate in batch and continuous experiments was achieved by a newly biofilm-formative isolated bacterium, identified by 16S rRNA as Acinetobacter EMY. The anoxic denitrifying capabilities of Acinetobacter EMY, attached to plastic biocarriers in batch and continuous moving bed bioreactors, demonstrated up to 1.75 times higher nitrate removal compared with a bacterial suspension. The denitrification rates of nitrate (200 mg/l) in the continuous operation mode were 0.39, 0.65, 1.23, and 1.14 kg-N/m 3 /d, with hydraulic retention times (HRTs) of 12, 8, 4, and 2 h, respectively, whereas the batch reactor removal performance showed up to 1.49 kg-N/m 3 /d. To the best of our knowledge, these findings are the highest values obtained for nitrate removal in comparison to previous studies focused on the characterization of denitrifying isolates. In addition, this bacterium is able to consume all of the organic matter provided in solution together with the nitrate, without leaving any residuals of organic matter in the water. This is advantageous since nitrate removal treatments by heterotrophic bacteria usually require addition of organic matter to the system, leading to secondary pollution. The isolated bacterium therefore provides a good solution for biological treatment of nitrogen in water, particularly in treatment systems that integrate immobilized biomass in the treatment process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.