Wireless sensor networks have become incredibly popular due to the Internet of Things' (IoT) rapid development. IoT routing is the basis for the efficient operation of the perception-layer network. As a popular type of machine learning, reinforcement learning techniques have gained significant attention due to their successful application in the field of network communication. In the traditional Routing Protocol for lowpower and Lossy Networks (RPL) protocol, to solve the fairness of control message transmission between IoT terminals, a fair broadcast suppression mechanism, or Drizzle algorithm, is usually used, but the Drizzle algorithm cannot allocate priority. Moreover, the Drizzle algorithm keeps changing its redundant constant k value but never converges to the optimal value of k. To address this problem, this paper uses a combination based on reinforcement learning (RL) and trickle timer. This paper proposes an RL Intelligent Adaptive Trickle-Timer Algorithm (RLATT) for routing optimization of the IoT awareness layer. RLATT has triple-optimized the trickle timer algorithm. To verify the algorithm's effectiveness, the simulation is carried out on Contiki operating system and compared with the standard trickling timer and Drizzle algorithm. Experiments show that the proposed algorithm performs better in terms of packet delivery ratio (PDR), power consumption, network convergence time, and total control cost ratio.
The unloaded Q of complex cavity structures is computed by using the finite-difference-time-domain technique (FDTD). The FDTD technique computes the cavity fields that are integrated in time and space to yield the stored energy and power loss frvm which the quality factor is obtained. A comparison of the Q computed from this method with analytical and measured resultsis given. 0 1996 John wiley & Sons, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.