A new and in situ formed reagent generated by mixing PIFA {bis[(trifluoroacetoxy)iodobenzene]} and AlCl3 was introduced in the organic synthesis for the direct and highly regioselective ortho‐chlorination of phenols and phenol ethers. An efficient electrophilic chlorination for these electron‐rich arenes as well as the scope of the reaction are described herein. An easy, practical, and open‐flask reaction allowed us to introduce a chlorine atom, which is a highly important functional group in organic synthesis. The reproducibility of our method has been demonstrated on gram‐scale by carrying out the reaction in 6‐bromo‐2‐naphthol. This halogenation reaction also proceeds in excellent conditions by first preparing the iodine(III)‐based chlorinating reagent. Our new chlorinating reagent can be stored at least for two weeks at 4 °C without losing its reactivity.
A practical electrophilic bromination procedure for the phenolic core was developed under efficient and very mild reaction conditions. The new I(iii)-based brominating reagent PhIOAcBr operationally easy to prepare by mixing PIDA and AlBr3 was used.
An oxidative procedure for the electrophilic
iodination of phenols
was developed by using iodosylbenzene as a nontoxic iodine(III)-based
oxidant and ammonium iodide as a cheap iodine atom source. A totally
controlled monoiodination was achieved by buffering the reaction medium
with K3PO4. This protocol proceeds with short
reaction times, at mild temperatures, in an open flask, and generally
with high yields. Gram-scale reactions, as well as the scope of this
protocol, were explored with electron-rich and electron-poor phenols
as well as heterocycles. Quantum chemistry calculations revealed PhII(OH)·NH3 to be the most plausible iodinating active species as a reactive
“I+” synthon. In light of the relevance of
the iodoarene moiety, we present herein a practical, efficient, and
simple procedure with a broad functional group scope that allows access
to the iodoarene core unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.