A mole is a born digger spending its entire existence digging tunnels. The five claws of a mole's hand are combinative to cut soil powerfully and efficiently. However, little was known in detail about the interaction between the soil and the five-claw combination. In this study, we simulated the soil cutting process of the five-claw combination using the discrete element method (DEM) as an attempt for the potential design of soil-engaging tools to reduce soil resistance. The five-claw combination moved horizontally in the soil bin. Soil forces (draught and vertical forces) and soil failure (soil rupture distance ratio) were measured at different rake angles and speeds. Results showed that the draught and vertical forces varied nonlinearly as the rake angle increased from 10 to 90°, and both changed linearly with the speed increasing from 1 to 5 m/s. The curve of the soil rupture distance ratio with rake angles could be better described using a quadric function, but the speed had little effect on the soil rupture distance ratio. Notably, the soil rupture distance ratio of the five-claw combination in simulation was on average 19.6% lower than the predicted ratio of simple blades at different rake angles indicating that the five-claw combination could make less soil failure and thereby produce lower soil resistance. Given the draught and vertical forces, the performance of the five-claw combination was optimized at the rake angle of 30°.
A rotary cultivator is a primary cultivating machine in many countries. However, it is always challenged by high operating torque and power requirement. To address this issue, biomimetic rotary tillage blades were designed in this study for reduced torque and energy requirement based on the geometric characteristics (GC) of five fore claws of mole rats, including the contour curves of the five claw tips (GC-1) and the structural characteristics of the multiclaw combination (GC-2). Herein, the optimal blade was selected by considering three factors: (1) the ratio ( r ) of claw width to lateral spacing, (2) the inclined angle ( θ ) of the multiclaw combination, and (3) the rotary speed ( n ) through the soil bin tests. The results showed that the order of influence of factors on torque was n , r , and θ ; the optimal combination of factors with the minimal torque was r = 1.25 , θ = 60 ° , and n = 240 rpm . Furthermore, the torque of the optimal blade (BB-1) was studied by comparing with a conventional (CB) and a reported optimal biomimetic blade (BB-2) in the soil bin at the rotary speed from 160 to 320 rpm. Results showed that BB-1 and BB-2 averagely reduced the torque by 13.99% and 3.74% compared with CB, respectively. The field experiment results also showed the excellent soil-cutting performance of BB-1 whose average torques were largely reduced by 17.00%, 16.88%, and 21.80% compared with CB at different rotary speeds, forward velocities, and tillage depths, respectively. It was found that the geometric structure of the five claws of mole rats could not only enhance the penetrating and sliding cutting performance of the cutting edge of BB-1 but also diminish the soil failure wedge for minimizing soil shear resistance of BB-1. Therefore, the GC of five fore claws of mole rats could inspire the development of efficient tillage or digging tools for reducing soil resistance and energy consumption.
Root crops grow in the soil deeply and bond with soil closely, which results in that the process of the separation between soil and root becomes the most difficult during the harvesting processes. In order to harvest root crops efficiently, the mechanical harvesting has become the main developing trend. However, high power and high damage rate are still occurred when mechanical harvester gets in touch with the roots. In this paper, we review the research of the development and evaluation of the mechanical harvesting of root crops and its performance optimization on the past years. The process of soil separation mainly consists in the initial separation between root and the ground and further separation between root and adhered soil. In general, the soil-cutting operation in the initial separation and the sieving mechanism in the further separation require high draught and power. And the dramatic friction, impact, pressure and so on, which happen in the components and soil-roots, are the key reasons to lead to root damage. The optimization of harvesting methods and parameters, including the digging shovel shape, working conditions, vibration, and screening way, is more significant in improving the harvesting performance. But there are still some limitations in the research and application of the mechanical harvester for root crops. Future research is suggested to focus on the development of the soil break-up when the digging shovel cutting soil, the insight into the interaction between soil and roots by different external compression loads, and the long-term studies to verify the high-efficiency and low-damage performances of mechanical harvester in practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.