Tilt rotor unmanned aerial vehicles exhibit their effectiveness via a novel and convenient structure. However, the flight control system is a critical problem in need of a robust solution. Focusing on its flight features, which display strong nonlinear and varying dynamics, caused by complexity in the aerodynamic layout and tilting structure, a practical control scheme is proposed to meet such technical issues. This paper first develops the nonlinear model, consisting of the interference between rotors and the wing body, relying on wind tunnel technology. A simplified linear model that decomposes the longitudinal and lateral components is used in order to facilitate controller design. Then, a time-scale separation decoupling control scheme based upon active disturbance rejection control is proposed to cope with control challenges. Introducing the concept of virtual control input, an effective control allocation is obtained by choosing the appropriate bandwidth in the frequency domain. The extended state observer is applied to estimate and compensate for unknown total disturbances and model uncertainties. Finally, robustness verification, successful test-bench experiments, and practical flight tests that show the fast tracking and disturbance rejection of the active disturbance rejection control controller are discussed. The proposed practical coupling rejection control design demonstrates its capability to employ a single input single output method to control a tri-tiltRotor flying wing unmanned aerial vehicle relying on active disturbance rejection control.
The high incidence aerodynamics of a lightweight jet trainer aircraft model has been investigated using a novel five degree-of-freedom (DoF) dynamic manoeuvre rig, recently updated with improved actuation and data acquisition systems, in the 7 × 5 closed-section low-speed wind tunnel at the University of Bristol. The major focus was to identify the nonlinear and unsteady aerodynamic characteristics specific to the stall region and which affect free-to-move aircraft model behaviour. First, the unstable equilibrium states in the limit cycle regions were stabilized, and so observed, over a wide range of angles of attack using a simple elevator feedback control law based on pitch angle and pitch-rate sensor measurements. Tests with two degrees-of-freedom, namely the aircraft model and rig arm pitch angles, revealed the existence of static hysteresis in the normal force acting on the aircraft model in the stall region. Unlocking the aircraft model in roll and yaw accompanied by feedback stabilization of the lateral-directional modes of motion demonstrated onset of asymmetric aerodynamic rolling and yawing moments in this four degree-of-freedom configuration. This observation implicitly indicates a link between the static hysteresis in the normal aerodynamic force with an onset of aerodynamic asymmetry. The experimental results show the efficiency of the updated multi-degree-of-freedom actively controlled manoeuvre rig in providing insight into complicated aerodynamic effects within the stall region. Nomenclature C L = aircraft model lift coefficient
General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. This paper presents recent progress in the development of a novel multi-degree-offreedom dynamic manoeuvre rig aimed at investigation of aircraft model nonlinear and time dependent aerodynamics in the wind tunnel. The purpose and characteristics of the rig are first described, along with a description of the data acquisition, processing and presentation system. The dynamic manoeuvre rig capabilities are demonstrated via a series of experiments involving a wind tunnel model aircraft in a closed section low-speed wind tunnel. First, an experiment illustrating low-speed wind tunnel aerodynamic model identification is presented. Then, examples of experiments involving real-time control of the rig/aircraft model are shown; these are evaluated in terms of testing productivity with a focus on the development and design of aircraft control laws.
A new landing strategy is presented for manned electric vertical takeoff and landing (eVTOL) vehicles, using a roll maneuver to obtain a trajectory in the horizontal plane. This strategy rejects the altitude surging in the landing process, which is the fatal drawback of the conventional jumping strategy. The strategy leads to a smoother transition from the wing-borne mode to the thrust-borne mode, and has a higher energy efficiency, meaning a better flight experience and higher economic performance. To employ the strategy, a five-stage maneuver is designed, using the lateral maneuver instead of longitudinal climbing. Additionally, a control system based on L1 adaptive control theory is designed to assist manned driving or execute flight missions independently, consisting of the guidance logic, stability augmentation system and flight management unit. The strategy is verified with the ET120 platform, by Monte Carlo simulation for robustness and safety performance, and an experiment was performed to compare the benefits with conventional landing strategies. The results show that the performance of the control system is robust enough to reduce perturbation by at least 20% in all modeling parameters, and ensures consistent dynamic characteristics between different flight modes. Additionally, the strategy successfully avoids climbing during the landing process with a smooth trajectory, and reduces the energy consumed for landing by 64%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.