Recently unsupervised learning of depth from videos has made remarkable progress and the results are comparable to fully supervised methods in outdoor scenes like KITTI. However, there still exist great challenges when directly applying this technology in indoor environments, e.g., large areas of non-texture regions like white wall, more complex ego-motion of handheld camera, transparent glasses and shiny objects. To overcome these problems, we propose a new optical-flow based training paradigm which reduces the difficulty of unsupervised learning by providing a clearer training target and handles the non-texture regions. Our experimental evaluation demonstrates that the result of our method is comparable to fully supervised methods on the NYU Depth V2 benchmark. To the best of our knowledge, this is the first quantitative result of purely unsupervised learning method reported on indoor datasets.
Forward-chaining rule systems must test each newly asserted fact against a collection of predicates to find those rules that match the fact. Expert system rule engines use a simple combination of hashing and sequential search for this matching. We introduce an algorithm for finding the matching predicates that is more efficient than the standard algorithm when the number of predicates is large. We focus on equality and inequality predicates on totally ordered domains. This algorithm is well-suited for database rule systems, where predicate-testing speed is critical. A key component of the algorithm is the
interval binary search tree
(IBS-tree). The IBS-tree is designed to allow efficient retrieval of all intervals (e.g. range predicates) that overlap a point, while allowing dynamic insertion and deletion of intervals. The algorithm could also be used to improve the performance of forward-chaining inference engines for large expert systems applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.