The radius valley, a bifurcation in the size distribution of small, close-in exoplanets, is hypothesized to be a signature of planetary atmospheric loss. Such an evolutionary phenomenon should depend on the age of the star–planet system. In this work, we study the temporal evolution of the radius valley using two independent determinations of host star ages among the California–Kepler Survey (CKS) sample. We find evidence for a wide and nearly empty void of planets in the period–radius diagram at the youngest system ages (≲2–3 Gyr) represented in the CKS sample. We show that the orbital period dependence of the radius valley among the younger CKS planets is consistent with that found among those planets with asteroseismically determined host star radii. Relative to previous studies of preferentially older planets, the radius valley determined among the younger planetary sample is shifted to smaller radii. This result is compatible with an atmospheric loss timescale on the order of gigayears for progenitors of the largest observed super-Earths. In support of this interpretation, we show that the planet sizes that appear to be unrepresented at ages ≲2–3 Gyr are likely to correspond to planets with rocky compositions. Our results suggest that the size distribution of close-in exoplanets and the precise location of the radius valley evolve over gigayears.
The rotational evolution of cool dwarfs is poorly constrained after ∼1–2 Gyr due to a lack of precise ages and rotation periods for old main-sequence stars. In this work, we use velocity dispersion as an age proxy to reveal the temperature-dependent rotational evolution of low-mass Kepler dwarfs and demonstrate that kinematic ages could be a useful tool for calibrating gyrochronology in the future. We find that a linear gyrochronology model, calibrated to fit the period– relationship of the Praesepe cluster, does not apply to stars older than around 1 Gyr. Although late K dwarfs spin more slowly than early-K dwarfs when they are young, at old ages, we find that late K dwarfs rotate at the same rate or faster than early-K dwarfs of the same age. This result agrees qualitatively with semiempirical models that vary the rate of surface-to-core angular momentum transport as a function of time and mass. It also aligns with recent observations of stars in the NGC 6811 cluster, which indicate that the surface rotation rates of K dwarfs go through an epoch of inhibited evolution. We find that the oldest Kepler stars with measured rotation periods are late K and early M dwarfs, indicating that these stars maintain spotted surfaces and stay magnetically active longer than more massive stars. Finally, based on their kinematics, we confirm that many rapidly rotating GKM dwarfs are likely to be synchronized binaries.
The rotation periods of planet-hosting stars can be used for modeling and mitigating the impact of magnetic activity in radial velocity measurements and can help constrain the high-energy flux environment and space weather of planetary systems. Millions of stars and thousands of planet hosts are observed with the Transiting Exoplanet Survey Satellite (TESS). However, most will only be observed for 27 contiguous days in a year, making it difficult to measure rotation periods with traditional methods. This is especially problematic for field M dwarfs, which are ideal candidates for exoplanet searches, but which tend to have periods in excess of the 27 day observing baseline. We present a new tool, Astraea, for predicting long rotation periods from short-duration light curves combined with stellar parameters from Gaia DR2. Using Astraea, we can predict the rotation periods from Kepler 4 yr light curves with 13% uncertainty overall (and a 9% uncertainty for periods >30 days). By training on 27 day Kepler light-curve segments, Astraea can predict rotation periods up to 150 days with 9% uncertainty (5% for periods >30 days). After training this tool on these 27 day Kepler light-curve segments, we applied Astraea to real TESS data. For the 195 stars that were observed by both Kepler and TESS, we were able to predict the rotation periods with 55% uncertainty despite the wild differences in systematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.