Background Rotavirus is the leading global pathogen of diarrhea-associated mortality and poses a great threat to public health in all age groups. This study aimed to explore the global burden and 30-year change patterns of rotavirus infection-associated deaths. Methods Based on the Global Burden of Disease 2019 Study (GBD 2019), we analyzed the age-standardized death rate (ASDR) of rotavirus infection by sex, geographical region, and sociodemographic index (SDI) from 1990 to 2019. A Joinpoint regression model was used to analyze the global trends in rotavirus infection over the 30 years, SaTScan software was used to detect the spatial and temporal aggregations, and a generalized linear model to explore the relationship between sociodemographic factors and death rates of rotavirus infection. Results Globally, rotavirus infection was the leading cause of diarrheal deaths, accounting for 19.11% of deaths from diarrhea in 2019. Rotavirus caused a higher death burden in African, Oceanian, and South Asian countries in the past three decades. The ASDR of rotavirus declined from 11.39 (95% uncertainty interval [95% UI] 5.46–19.48) per 100,000 people in 1990 to 3.41 (95% UI 1.60–6.01) per 100,000 people in 2019, with an average annual percentage change (AAPC) (− 4.07%, P < 0.05). However, a significant uptrend was found in high-income North America (AAPC = 1.79%, P < 0.05). The death rate was the highest among children under 5 years worldwide. However, the death rates of elderly individuals over 70 years were higher than those of children under 5 years in 2019 among high, high-middle, middle, and low-middle SDI regions. Current health expenditure, gross domestic product per capita, and the number of physicians per 1000 people were significantly negatively correlated with death rates of rotavirus. Conclusions Although the global trends in the rotavirus burden have decreased substantially over the past three decades, the burden of rotavirus remained high in Africa, Oceania, and South Asia. Children under 5 years and elderly individuals over 70 years were the populations most at risk for rotavirus infection-associated deaths, especially elderly individuals over 70 years in relatively high SDI regions. More attention should be paid to these areas and populations, and effective public health policies should be implemented in the future.
IntroductionAs an important pathogen causing diarrheal diseases, the burden and change in the death rate of norovirus-associated diseases (NADs) globally are still unknown.MethodsBased on global disease burden data from 1990 to 2019, we analyzed the age-standardized death rate (ASDR) of NADs by age, region, country, and Socio-Demographic Index (SDI) level. The discrete Poisson model was applied in the analysis of NADs' spatiotemporal aggregation, the Joinpoint regression model to analyze the trend of death burden of NADs over 30 years, and a generalized linear model to identify the risk factors for the death rate from NADs.ResultsThe ASDR of NADs significantly decreased by a factor of approximately 2.7 times, from 5.02 (95% CI: 1.1, 11.34) in 1990 to 1.86 (95% CI: 0.36, 4.16) in 2019 [average annual percent change (AAPC) = −3.43, 95% CI: −3.56, −3.29]. The death burden of NADs in 2019 was still highest in African regions despite a great decline in recent decades. However, the ASDR in high SDI countries presented an uptrend [0.12 (95% CI: 0.03, 0.26) in 1990 and 0.24 (95% CI: 0.03, 0.53) in 2019, AAPC = 2.52, 95% CI: 2.02–3.03], mainly observed in the elderly over 70 years old. Compared to children under 5 years old, the 2019 death rate of elderly individuals over 80 years old was much higher in high SDI countries. The generalized linear model showed that factors of the number of physicians (RR = 0.67), the proportions of children under 14 years old (RR = 1.21), elderly individuals over 65 years old (RR = 1.13), educational level (RR = 1.03) and urbanization proportion (RR = 1.01) influenced the ASDR of NADs.ConclusionsThe death burden of NADs has remained high in developing regions over the last three decades and has increased among the elderly in countries with high SDI levels, even though the global trend in NAD-associated deaths has decreased significantly in the past three decades. More effective public health policies against NADs need to be implemented in high SDI regions and for the elderly.
Meteorological factors and the increase in extreme weather events are closely related to the incidence rate of infectious diarrhea. However, few studies have explored whether the impact of the same meteorological factors on the incidence rate of infectious diarrhea in different climate regions has changed and quantified these changes. In this study, the time series fixed-effect Poisson regression model guided by climate was used to quantify the relationships between the incidence rate of various types of infectious diarrhea and meteorological factors in different climate regions of China from 2004 to 2018, with a lag of 0–2 months. In addition, six social factors, including per capita Gross Domestic Product (GDP), population density, number of doctors per 1000 people, proportion of urbanized population, proportion of children aged 0–14 years old, and proportion of elderly over 65 years old, were included in the model for confounding control. Additionally, the intercept of each province in each model was analyzed by a meta-analysis. Four climate regions were considered in this study: tropical monsoon areas, subtropical monsoon areas, temperate areas and alpine plateau areas. The results indicate that the influence of meteorological factors and extreme weather in different climate regions on diverse infectious diarrhea types is distinct. In general, temperature was positively correlated with all infectious diarrhea cases (0.2 ≤ r ≤ 0.6, p < 0.05). After extreme rainfall, the incidence rate of dysentery in alpine plateau area in one month would be reduced by 18.7% (95% confidence interval (CI): −27.8–9.6%). Two months after the period of extreme sunshine duration happened, the incidence of dysentery in the alpine plateau area would increase by 21.9% (95% CI: 15.4–28.4%) in that month, and the incidence rate of typhoid and paratyphoid in the temperate region would increase by 17.2% (95% CI: 15.5–18.9%) in that month. The meta-analysis showed that there is no consistency between different provinces in the same climate region. Our study indicated that meteorological factors and extreme weather in different climate areas had different effects on various types of infectious diarrhea, particularly extreme rainfall and extreme sunshine duration, which will help the government develop disease-specific and location-specific interventions, especially after the occurrence of extreme weather.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.