Phase change materials (PCMs) have triggered considerable attention as candidates for solar‐thermal energy conversion. However, their intrinsic low thermal conductivity prevents the rapid spreading of heat into the interior of the PCM, causing low efficiencies in energy storage/release. Herein, anisotropic and lightweight high‐quality graphene aerogels are developed by directionally freezing aqueous suspensions of polyamic acid salt and graphene oxide to form vertically aligned monoliths, followed by freeze‐drying, imidization at 300 °C and graphitization at 2800 °C. After impregnating with paraffin wax, the resultant phase change composite (PCC) exhibits a high transversal thermal conductivity of 2.68 W m−1 K−1 and an even higher longitudinal thermal conductivity of 8.87 W m−1 K−1 with an exceptional latent heat retention of 98.7%. When subjected to solar radiation, solar energy is converted to heat at the exposed surface of the PCC. As a result of the PCC's high thermal conductivity in the thickness direction, heat can spread readily into the interior of the PCC enabling a small temperature gradient of <3.0 K cm−1 and a fast charging feature. These results demonstrate the potential for real‐time and fast‐charging solar‐thermal energy conversion using phase change materials with tailored anisotropy in their thermal properties.
Carbon nanofibers were synthesized from common solid carbon sources (such as artificial graphites and acetylene black) in the presence of an iron catalyst by direct carbonization. This inexpensive and simple method is expected to trigger a revolution in the preparation of nanocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.