In urban environments, cellular network-based positioning of user equipment (UE) is a challenging task, especially in frequently occurring non-line-of-sight (NLOS) conditions. This paper investigates the use of two machine learning methodsneural networks and random forests -to estimate the position of UE in NLOS using best received reference signal beam power measurements. We evaluated the suggested positioning methods using data collected from a fifth-generation cellular network (5G) testbed provided by Ericsson. A statistical test to detect NLOS conditions with a probability of detection that is close to 90% is suggested. We show that knowledge of the antenna are crucial for accurate position estimation. In addition, our results show that even with a limited set of training data and one 5G transmission point, it is possible to position UE within 10 meters with 80% accuracy.
Abstract-There is a big trend nowadays to use event-triggered proximity report for indoor positioning. This paper presents a generic received-signal-strength (RSS) threshold optimization framework for generating informative proximity reports. The proposed framework contains five main building blocks, namely the deployment information, RSS model, positioning metric selection, optimization process and management. Among others, we focus on Gaussian process regression (GPR) based RSS models and positioning metric computation. The optimal RSS threshold is found through minimizing the best achievable localization root-mean-square-error formulated with the aid of fundamental lower bound analysis. Computational complexity is compared for different RSS models and different fundamental lower bounds. The resulting optimal RSS threshold enables enhanced performance of new fashioned low-cost and low-complex proximity report based positioning algorithms. The proposed framework is validated with real measurements collected in an office area where bluetooth-low-energy (BLE) beacons are deployed.
Posterior Cramér-Rao bounds (CRBs) are derived for the estimation performance of three Gaussian process-based state-space models. The parametric CRB is derived for the case with a parametric state transition and a Gaussian process-based measurement model. We illustrate the theory with a target tracking example and derive both parametric and posterior filtering CRBs for this specific application. Finally, the theory is illustrated with a positioning problem, with experimental data from an office environment where the obtained estimation performance is compared to the derived CRBs.
The commercial interest in proximity services is increasing. Application examples include location-based information and advertisements, logistics, social networking, file sharing, etc. In this paper, we consider positioning of devices based on a time series of proximity reports from a mobile device to a network node. This corresponds to nonlinear measurements with respect to the device position in relation to the network nodes. Motion model will be needed together with the measurements to determine the position of the device. Therefore, sequential Monte Carlo methods, namely particle filtering and smoothing, are applicable for positioning. Positioning performance is evaluated in a typical office area with Bluetooth-low-energy beacons deployed for proximity detection and report, and is further compared to parametric Cramér-Rao lower bounds. Finally, the position accuracy is also evaluated with real experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.