BackgroundIdentification of gene variants plays an important role in research on and diagnosis of genetic diseases. A combination of enrichment of targeted genes and next-generation sequencing (targeted DNA-HiSeq) results in both high efficiency and low cost for targeted sequencing of genes of interest.Methodology/Principal FindingsTo identify mutations associated with genetic diseases, we designed an array-based gene chip to capture all of the exons of 193 genes involved in 103 genetic diseases. To evaluate this technology, we selected 7 samples from seven patients with six different genetic diseases resulting from six disease-causing genes and 100 samples from normal human adults as controls. The data obtained showed that on average, 99.14% of 3,382 exons with more than 30-fold coverage were successfully detected using Targeted DNA-HiSeq technology, and we found six known variants in four disease-causing genes and two novel mutations in two other disease-causing genes (the STS gene for XLI and the FBN1 gene for MFS) as well as one exon deletion mutation in the DMD gene. These results were confirmed in their entirety using either the Sanger sequencing method or real-time PCR.Conclusions/SignificanceTargeted DNA-HiSeq combines next-generation sequencing with the capture of sequences from a relevant subset of high-interest genes. This method was tested by capturing sequences from a DNA library through hybridization to oligonucleotide probes specific for genetic disorder-related genes and was found to show high selectivity, improve the detection of mutations, enabling the discovery of novel variants, and provide additional indel data. Thus, targeted DNA-HiSeq can be used to analyze the gene variant profiles of monogenic diseases with high sensitivity, fidelity, throughput and speed.
Subclonal architecture and genomic evolution of small-cell lung cancer (SCLC) under treatment has not been well studied primarily due to lack of tumor specimens, particularly longitudinal samples acquired during treatment. SCLC is characterized by early hematogenous spread, which makes circulating cell-free tumor DNA (ctDNA) sequencing a promising modality for genomic profiling. Here, we perform targeted deep sequencing of 430 cancer genes on pre-treatment tumor biopsies, as well as on plasma samples collected prior to and during treatment from 22 SCLC patients. Similar subclonal architecture is observed between pre-treatment ctDNA and paired tumor DNA. Mean variant allele frequency of clonal mutations from pre-treatment ctDNA is associated with progression-free survival and overall survival. Pre- and post-treatment ctDNA mutational analysis demonstrate that mutations of DNA repair and NOTCH signaling pathways are enriched in post-treatment samples. These data suggest that ctDNA sequencing is promising to delineate genomic landscape, subclonal architecture, and genomic evolution of SCLC.
Duchenne and Becker muscular dystrophies (DMD/BMD) are the most commonly inherited neuromuscular disease. However, accurate and convenient molecular diagnosis cannot be achieved easily because of the enormous size of the dystrophin gene and complex causative mutation spectrum. Such traditional methods as multiplex ligation-dependent probe amplification plus Sanger sequencing require multiple steps to fulfill the diagnosis of DMD/BMD. Here, we introduce a new single-step method for the genetic analysis of DMD patients and female carriers in real clinical settings and demonstrate the validation of its accuracy. A total of 89 patients, 18 female carriers and 245 non-DMD patients were evaluated using our targeted NGS approaches. Compared with traditional methods, our new method yielded 99.99% specificity and 98.96% sensitivity for copy number variations detection and 100% accuracy for the identification of single-nucleotide variation mutations. Additionally, this method is able to detect partial deletions/duplications, thus offering precise personal DMD gene information for gene therapy. We detected novel partial deletions of exons in nine samples for which the breakpoints were located within exonic regions. The results proved that our new method is suitable for routine clinical practice, with shorter turnaround time, higher accuracy, and better insight into comprehensive genetic information (detailed breakpoints) for ensuing gene therapy.
Next-generation sequencing (NGS) is commonly used in a clinical setting for diagnostic and prognostic testing of genetic mutations to select optimal targeted therapies. Herein, we describe the development of a custom NGS assay for detecting single-nucleotide variants (SNVs) and copy number variations (CNVs) in a panel of 51 genes related to breast cancer. We designed and implemented a validation strategy in accordance with principles and guidelines developed by the Next-Generation Sequencing: Standardization of Clinical Testing work group using artificial, cell-free DNA (cfDNA) with mutant fragments prepared in a simple, rapid, and cost-effective manner. For SNV detection, our test had 96.30% sensitivity at mutant allele frequency ≥0.5% with high specificity (99.9997%) and accuracy (99.9996%). For CNV detection, the approach had 95.83% sensitivity for copy numbers at 1.25× (25.6% extra copies) with high specificity (99.77%) and accuracy (99.76%). In addition, our NGS-based assay demonstrated high intrarun and interrun reproducibility, high consistency compared to digital PCR, and a low cross-contamination rate. An overall assessment using cfDNA and plasma cfDNA samples demonstrated our custom NGS assay yields a reliable and robust detection sensitivity with a mutant allele frequency as low as 0.5% for SNVs and copy number of 1.25× for CNVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.