Calvarial bones are connected by fibrous sutures. These sutures provide a niche environment that includes mesenchymal stem cells (MSCs), osteoblasts, and osteoclasts, which help maintain calvarial bone homeostasis and repair. Abnormal function of osteogenic cells or diminished MSCs within the cranial suture can lead to skull defects, such as craniosynostosis. Despite the important function of each of these cell types within the cranial suture, we have limited knowledge about the role that crosstalk between them may play in regulating calvarial bone homeostasis and injury repair. Here we show that suture MSCs give rise to osteoprogenitors that show active bone morphogenetic protein (BMP) signalling and depend on BMP-mediated Indian hedgehog (IHH) signalling to balance osteogenesis and osteoclastogenesis activity. IHH signalling and receptor activator of nuclear factor kappa-Β ligand (RANKL) may function synergistically to promote the differentiation and resorption activity of osteoclasts. Loss of Bmpr1a in MSCs leads to downregulation of hedgehog (Hh) signalling and diminished cranial sutures. Significantly, activation of Hh signalling partially restores suture morphology in Bmpr1a mutant mice, suggesting the functional importance of BMP-mediated Hh signalling in regulating suture tissue homeostasis. Furthermore, there is an increased number of CD200+ cells in Bmpr1a mutant mice, which may also contribute to the inhibited osteoclast activity in the sutures of mutant mice. Finally, suture MSCs require BMP-mediated Hh signalling during the repair of calvarial bone defects after injury. Collectively, our studies reveal the molecular and cellular mechanisms governing cell–cell interactions within the cranial suture that regulate calvarial bone homeostasis and repair.
Craniofacial development depends on cell-cell interactions, coordinated cellular movement and differentiation under the control of regulatory gene networks, which include the distal-less (Dlx) gene family. However, the functional significance of in patterning the oropharyngeal region has remained unknown. Here, we show that loss of leads to a shortened soft palate and an absence of the levator veli palatini, palatopharyngeus and palatoglossus muscles that are derived from the 4th pharyngeal arch (PA); however, the tensor veli palatini, derived from the 1st PA, is unaffected. Dlx5-positive cranial neural crest (CNC) cells are in direct contact with myoblasts derived from the pharyngeal mesoderm, and disruption leads to altered proliferation and apoptosis of CNC and muscle progenitor cells. Moreover, the FGF10 pathway is downregulated in mice, and activation of FGF10 signaling rescues CNC cell proliferation and myogenic differentiation in these mutant mice. Collectively, our results indicate that plays crucial roles in the patterning of the oropharyngeal region and development of muscles derived from the 4th PA mesoderm in the soft palate, likely via interactions between CNC-derived and myogenic progenitor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.