With the continuous infiltration of industrialization and modern lifestyle into pastoral areas, the types and processing capacity of Hurunge are decreasing, and the beneficial microbial resources contained in it are gradually disappearing. The preservation and processing of Hurunge are very important for herdsmen to successfully produce high-quality koumiss in the second year. Therefore, in this study, 12 precious Hurunge samples collected from Bulgan Province, Ovorkhangay Province, Arkhangay Province, and Tov Province of Mongolia were sequenced based on the V3–V4 region of the 16S rRNA gene, and the bacterial diversity and function were predicted and analyzed. There were significant differences in the species and abundance of bacteria in Hurunge from different regions and different production methods (p < 0.05). Compared with the traditional fermentation methods, the OTU level of Hurunge fermented in the capsule was low, the Acetobacter content was high and the bacterial diversity was low. Firmicutes and Lactobacillus were the dominant phylum and genus of 12 samples, respectively. The sample QHA contained Komagataeibacter with the potential ability to produce bacterial nanocellulose, and the abundance of Lactococcus in the Tov Province (Z) was significantly higher than that in the other three regions. Functional prediction analysis showed that genes related to the metabolism of bacterial growth and reproduction, especially carbohydrate and amino acid metabolism, played a dominant role in microorganisms. In summary, it is of great significance to further explore the bacterial diversity of Hurunge for the future development and research of beneficial microbial resources, promotion, and protection of the traditional ethnic dairy products.
Diarrhea is one of the common adverse reactions in antibiotic treatment, which is usually caused by the imbalance of intestinal flora, and probiotics play an important role in the structure of intestinal flora. Therefore, this experiment studied the regulatory effect of Lactiplantibacillus plantarum 2-33 on antibiotic-associated diarrhea (AAD) mice. First, the AAD mice model was established by the mixed antibiotic solution of gentamicin sulfate and cefradine. Then, the physiological indexes and diarrhea of mice were observed and recorded by gastric perfusion of low dose (1.0 × 107 CFU/ml), medium dose (1.0 × 108CFU/ml), and high dose (1.0 × 109 CFU/ml) strain 2-33. 16S rRNA gene V3-V4 regions were sequenced in colon contents of mice in control group, model group, self-healing group, and experimental group, respectively, and the diversity of intestinal flora and gene function prediction were analyzed. The results showed that the intestinal flora of AAD mice was not significantly regulated by gastric perfusion of strain 2-33 to 7 days, but the relative abundance and diversity of intestinal flora of AAD mice were significantly improved by gastric perfusion to 14 days (p < 0.05). In addition, at the genus level, the relative abundance of Lactobacillus increased significantly, and the relative abundance of Enterococcus and Bacillus decreased significantly (p < 0.05). In addition, the regulation of strain 2-33 on intestinal flora of AAD mice was time- and dose-dependent, short-term gastric perfusion, and low dose had no significant effect (p > 0.05). Strain 2-33 can significantly increase the levels of anti-inflammatory cytokines IL-4 and IL-10, significantly decrease the levels of proinflammatory cytokines TNF-α and IFN-γ (p < 0.05), and can also adjust carbohydrate metabolism, amino acid metabolism, and energy metabolism to normal levels, thus accelerating the recovery of intestinal flora structure of AAD mice. In summary, strain 2-33 can improve the structure and diversity of intestinal flora of AAD mice, balance the level of substance and energy metabolism, and play a positive role in relieving diarrhea, maintaining and improving the intestinal microecological balance.
At present, there are few reports on bacterial diversity of Alxa white cashmere goat milk and its dairy products.The results of this study showed that there were significant differences in bacterial diversity and abundance of Alxa white cashmere goat milk and its dairy products (p < 0.05), The dominant bacteria phylum and dominant bacteria genus are changed when goat milk is made into traditional dairy products. In this study, we found that there were many unspecified bacterial genera in goat milk and its dairy products, which need to be further studied. In addition, the relative abundance of foodborne pathogenic bacteria generic such as Enterobacter, Enterococcus, Raoultella and Pseudomonas in dairy products decreased sharply, which provided a reference for the safety evaluation of goat milk and its dairy products. Prediction of bacterial gene function by PICRUSt2 software revealed that the main bacterial metabolic pathways in goat milk and dairy products were Global and overview maps, Carbohydrate metabolism and Amino acid metabolism, etc. This study shows that there are differences in the functions of metabolism-related genes in goat milk and dairy products, which further indicates that the functions of these major metabolic genes are closely related to probiotics in traditional dairy products. In summary, the results of this study not only have a certain understanding of the bacterial diversity in Alxa white cashmere goat milk and its dairy products, but also provide a reference for the study of probiotics, functional genes and safety evaluation in goat milk and its dairy products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.