We report the isotopic composition of five molybdenum (Mo) standard reference solutions and four fractions from one of these solutions eluted through anion resin column relative to a sixth reference solution. The reference solutions were National Institute of Standards and Technology (NIST) SRM 3134 (lot#891307), Johnson Matthey Specpure (JMC)-Mo Sie (lot #602332B), JMC-Mo Wen (lot#13989C), Merck (lot#170334), Sigma-Aldrich (lot#207306) and Prolabo. Measurements were conducted using Isoprobe multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at the Centre de Recherches P etrographiques et G eochimiques (France) and Nu Plasma MC-ICP-MS at either the Ecole Normale Sup erieure de Lyon (France) or the Laboratory of Isotope Geology in the Ministry of Land and Resources (China). The sample-standard bracketing method was employed to correct the mass bias for Mo isotopes during instrumental measurement. Except for the Merck Mo solution, all the Mo solutions were identical in isotopic composition within error. Although the JMC Mo solution has been used as the internal reference material by various groups, uncertainty may still occur with different lot numbers and availability might be limited. Here, we propose the NIST 3134 Mo solution as a new candidate for delta zero reference material, used for reporting Mo isotopic composition of natural samples. Isotopic compositions for four eluted fractions of the Sigma-Aldrich Mo solution were 2.18&, 0.98&, À1.10& and À1.95& for d 97/95 Mo relative to the NIST Mo standard. These values span the range of reported isotopic compositions for natural terrestrial and experimental samples (approximately À0.5& to 1.6& for d 97/95 Mo). We propose these eluted fractions to be used as a secondary reference for Mo isotope measurements. Mo solutions are available at CRPG upon request.
Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.