Face sketch recognition identifies the face photo from a large face sketch dataset. Some traditional methods are typically used to reduce the modality gap between face photos and sketches and gain excellent recognition rate based on a pseudo image which is synthesized using the corresponded face photo. However, these methods cannot obtain better high recognition rate for all face sketch datasets, because the use of extracted features cannot lead to the elimination of the effect of different modalities' images. The feature representation of the deep convolutional neural networks as a feasible approach for identification involves wider applications than other methods. It is adapted to extract the features which eliminate the difference between face photos and sketches. The recognition rate is high for neural networks constructed by learning optimal local features, even if the input image shows geometric distortions. However, the case of overfitting leads to the unsatisfactory performance of deep learning methods on face sketch recognition tasks. Also, the sketch images are too simple to be used for extracting effective features. This paper aims to increase the matching rate using the Siamese convolution network architecture. The framework is used to extract useful features from each image pair to reduce the modality gap. Moreover, data augmentation is used to avoid overfitting. We explore the performance of three loss functions and compare the similarity between each image pair. The experimental results show that our framework is adequate for a composite sketch dataset. In addition, it reduces the influence of overfitting by using data augmentation and modifying the network structure.
Efficient layout of large-scale graphs remains a challenging problem: the force-directed and dimensionality reduction-based methods suffer from high overhead for graph distance and gradient computation. In this paper, we present a new graph layout algorithm, called DRGraph, that enhances the nonlinear dimensionality reduction process with three schemes: approximating graph distances by means of a sparse distance matrix, estimating the gradient by using the negative sampling technique, and accelerating the optimization process through a multi-level layout scheme. DRGraph achieves a linear complexity for the computation and memory consumption, and scales up to large-scale graphs with millions of nodes. Experimental results and comparisons with state-of-the-art graph layout methods demonstrate that DRGraph can generate visually comparable layouts with a faster running time and a lower memory requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.