Three-dimensional (3D) cell constructs are expected to provide osteoinductive materials to develop cell-based therapies for bone regeneration. The proliferation and spontaneous aggregation capability of induced pluripotent stem cells (iPSCs) thus prompted us to fabricate a scaffold-free iPSC construct as a transplantation vehicle. Embryoid bodies of mouse gingival fibroblast-derived iPSCs (GF-iPSCs) were seeded in a cell chamber with a round-bottom well made of a thermoresponsive hydrogel. Collected ball-like cell constructs were cultured in osteogenic induction medium for 30 days with gentle shaking, resulting in significant upregulation of osteogenic marker genes. The constructs consisted of an inner region of unstructured cell mass and an outer osseous tissue region that was surrounded by osteoblast progenitor-like cells. The outer osseous tissue was robustly calcified with elemental calcium and phosphorous as well as hydroxyapatite. Subcutaneous transplantation of the GF-iPSC constructs into immunodeficient mice contributed to extensive ectopic bone formation surrounded by teratoma tissue. These results suggest that mouse GF-iPSCs could facilitate the fabrication of osteoinductive scaffold-free 3D cell constructs, in which the calcified regions and surrounding osteoblasts may function as scaffolds and drivers of osteoinduction, respectively. With incorporation of technologies to inhibit teratoma formation, this system could provide a promising strategy for bone regenerative therapies.
Edited by Gianni CesareniKeywords: Monad PIH1D1 R2TP Breast cancer mTOR Ribosome a b s t r a c t PIH1D1 is the defining component of the R2TP complex. Recently, R2TP has been reported to stabilize mTOR (mammalian target of rapamycin), an important regulator of cell growth and protein synthesis. Two complexes of mTOR, mTORC1 and mTORC2, have been identified. We demonstrate that immunoprecipitation (IP) of PIH1D1 results in the co-IP of Raptor (mTORC1 specific), but not Rictor (mTORC2 specific), and that knockdown of PIH1D1 decreases mTORC1 assembly, S6 kinase phosphorylation (indicator of mTORC1 activity), and rRNA transcription without affecting mTORC2 in human breast cancer MCF-7 cells. In addition, we provide evidence that PIH1D1 is overexpressed in various breast cancer cell lines. These findings collectively suggest that PIH1D1 may have an important role in mTORC1 regulation in breast cancers.
Structured summary of protein interactions:mTOR physically interacts with PIH1D1 and Raptor by anti tag coimmunoprecipitation (View interaction) Rictor physically interacts with mTOR and Tel2 by anti bait coimmunoprecipitation (View interaction) Raptor physically interacts with Tel2, PIH1D1 and mTOR by anti bait coimmunoprecipitation (View interaction) PIH1D1 physically interacts with mTOR and Raptor by anti bait coimmunoprecipitation (View interaction)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.