Certain enteric viruses that are present in the water environment are potential risk factors of waterborne infections. To better understand the impact of viruses in water, both enteric viruses and their potential indicators should be comparatively investigated. In this study, occurrences of GI- and GII-noroviruses (NoVs), sapovirus (SaV), rotavirus (RoV), Aichi virus 1 (AiV-1), enterovirus (EV), and pepper mild mottle virus (PMMoV) were quantitatively determined in surface water samples in Japan. Additionally, the genotype distribution of GI- and GII-NoVs was determined using a next-generation amplicon sequencing. PMMoV was the most abundant virus regardless of season and location, indicating its usefulness as an indicator for the viral contamination of water. Other potential indicators, AiV and EV, were less abundant than GII-NoV. Viruses other than PMMoV showed seasonality, i.e., EV and other viruses (NoVs, SaV, RoV, and AiV-1) became prevalent during summer and winter, respectively. SaV showed a relatively high abundance at a location that was affected by untreated wastewater. Regarding NoV genotypes, GI.1, GI.2, GI.4, GI.5, GI.6, GII.3, GII.4, GII.6, and GII.17 were found from the surface water samples. GII.4 and GII.17 seemed to have contributed to the high abundance of GII-NoV in the samples. Interestingly, GII.17 strains became prevalent in the water samples before becoming prevalent among gastroenteritis patients in Japan. These findings provide further insights into the properties of viruses as contaminants in the water environment.