A pseudorotaxane consisting of a 24-membered crown ether and secondary ammonium salt with the hydroxy group at the terminus was quantitatively acylated by bulky acid anhydride in the presence of tributylphosphane as catalyst to afford the corresponding rotaxane in high yield. Large-scale synthesis without chromatographic separation was easily achieved. The ammonium group in the resulting rotaxane was quantitatively acylated with excess electrophile in the presence of excess trialkylamine. Various N-functionalized rotaxanes were prepared by this sequential double-acylation protocol. 1H NMR spectra and X-ray crystallographic analyses of the rotaxanes showed that the crown ether component was captured on the ammonium group in ammonium-type rotaxane by strong hydrogen-bonding intercomponent interaction. The conformation around the ammonium group was fixed by the hydrogen-bonding interaction. Meanwhile, the conformation of the amide-type rotaxane was determined by the weak CH/pi interaction between the methylene group in crown ether and the benzene ring of the axle component. The N-acylation of ammonium-type rotaxane is useful for the preparation of both functionalized rotaxanes and weak intercomponent interaction-based rotaxanes.
Acidity of a secondary ammonium group in a rotaxane system with a crown ether was unusually lowered. N-Acylation of the ammonium group by acid anhydrides or chlorides proceeded slowly in the presence of excess tertiary amine to give the N-acylated rotaxanes without salt structure.
Approximately 4.8–12.7 million tons of plastic waste has been estimated to be discharged into marine environments annually by wind and river currents. The Ellen MacArthur Foundation warns that the total weight of plastic waste in the oceans will exceed the total weight of fish in 2050 if the environmental runoff of plastic continues at the current rate. Hence, biodegradable plastics are attracting attention as a solution to the problems caused by plastic waste. Among biodegradable plastics, polyhydroxyalkanoates (PHAs) and poly(ε-caprolactone) (PCL) are particularly noteworthy because of their excellent marine biodegradability. In this review, the biosynthesis of PHA and cutin, a natural analog of PCL, and the biodegradation of PHA and PCL in carbon cycles in marine ecosystems are discussed. PHA is biosynthesized and biodegraded by various marine microbes in a wide range of marine environments, including coastal, shallow-water, and deep-sea environments. Marine cutin is biosynthesized by marine plants or obtained from terrestrial environments, and PCL and cutin are biodegraded by cutin hydrolytic enzyme-producing microbes in broad marine environments. Thus, biological carbon cycles for PHA and PCL exist in the marine environment, which would allow materials made of PHA and PCL to be quickly mineralized in marine environments.
We have produced fully biomass-based poly(butylene succinate) (PBS) from furfural produced from inedible agricultural cellulosic waste. Furfural was oxidized to give fumaric acid. Fumaric acid was hydrogenated under high pressure with a palladium-rhenium/carbon catalyst to give 1,4-butanediol, and with a palladium/carbon catalyst to give succinic acid. Dimethyl succinate was synthesized from fumaric acid by esterification and hydrogenation under normal pressure. Fully biomass-based PBS was obtained by polycondensation of biomass-based 1,4-butanediol and biomass-based succinic acid or dimethyl succinate. The biomass carbon ratio calculated from (14)C concentrations measured by accelerator mass spectroscopy (AMS) verified that the PBS obtained in this study contained only biomass carbon. The polycondensation of biomass-based 1,4-butanediol and petroleum-based terephthalic acid or dimethyl terephthalate gave partially biomass-based poly(butylene terephthalate), which is an engineering plastic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.