Context:Garcinia mangostana Linn. (Guttiferae) pericarp is used as a traditional medicine in South Asia to treat inflammatory diseases.Objective: This study investigates therapeutic effects of G. mangostana pericarp ethanol extract (MAN) on collagen-induced arthritis (CIA) and interactions with methotrexate in vivo.Materials and methods: Male Sprague-Dawley rats with CIA were treated with MAN (0.5 g/kg/day), methotrexate (0.5 mg/kg, bw) or combination of both for 36 days, respectively (n = 8/group). Another eight healthy and CIA rats served as normal and model control, respectively. Therapeutic effects were evaluated based on paw edema and arthritis score during the experiment and serological markers at the end of the study period. Histological and radiological examinations were used to assess joint destructions. The immune status was investigated by immunohistochemistry and flow cytometry.Results: All treatments decreased the arthritis score and paw inflammation in CIA rats. Combination regimen significantly reduced anti-cyclic citrullinated peptide antibody in CIA rats to 85.83% (p < 0.05) and notably alleviated synovial hyperplasia and cartilage degradation in joints. Different from methotrexate, MAN significantly augmented CD25+ cells distribution (from 2.72 to 3.35%) and IL-10 secretion (from 202.4 to 241.2 pg/mL) in CIA rat blood. Meanwhile, MAN induced a greater IL-17 decrease and a FOXP3 increase in immune organs than MTX. Reduced TLR4 and IL-17 expression and elevated FOXP3 expression in joints also occurred under MAN treatment.Conclusions: MAN protected joints from destruction in CIA rats and exerted synergistic effects with methotrexate by improving immune microenvironment. The combination regimen could bring additional benefits to rheumatoid arthritis patients.
Triptolide (TP) is the most effective ingredient found in the traditional Chinese herbal Tripterygium wilfordii Hook F, and it is widely used in therapies of autoimmune and inflammatory disorders. However, the hepatotoxicity induced by TP has restricted its use in clinical trials. Arctiin is known as a protective agent against oxidative stress, and it exerts liver-protecting effect. This study was aimed at investigating the protective role of arctiin against TP-induced hepatotoxicity using in vitro and in vivo models. The results indicated that TP not only obviously induced liver injury in mice but also significantly inhibited the growth of HepG2 cells and increased the level of intracellular reactive oxygen. Furthermore, TP obviously decreased the expressions of proteins of Nrf2 pathway including HO-1, NQO1, and Nrf2 associated with oxidative stress pathway. However, the above experimental indexes were reversed by the treatment of arctiin. Our results suggested that arctiin could alleviate TP-induced hepatotoxicity, and the molecular mechanism is likely related to its capacity against oxidative stress.
This study aimed to evaluate the effects of fish meal (FM) replacement by yeast hydrolysate (YH) on liver antioxidant capability, intestinal morphology, and inflammation-related genes of juvenile Jian carp (Cyprinus carpio var. Jian). A total of 600 fish (average initial weight 19.44 ± 0.06 g) were randomly selected and divided into five groups. Five isonitrogenous and isocaloric diets replacing FM by YH 0% (YH0), 1% (YH1), 3% (YH3), 5% (YH5), and 7% (YH7) were formulated. Each diet was tested in four replicates for 10 weeks. The results have shown that, compared to the control group (YH0), liver total superoxide dismutase (t-SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione (GSH) activities of fish fed YH1 and YH3 diets were significantly higher (P < 0.05). Liver malondialdehyde (MDA) concentration significantly increased as supplementation levels of YH increased from 1 to 7% (P < 0.05). Moreover, intestinal microvillus length of juvenile Jian carp fed YH diets were significantly higher than that of fish fed the control diet (P < 0.05). In proximal intestine, the relative expression levels of inflammation-related genes (ALP, IL-1β, and TNF-α) in YH7 were significantly higher than that in the control group (P < 0.05). However, in midintestine, the expression levels of these genes in YH3 were significantly lower compared to the control group (P < 0.05). The results of this study indicated that dietary replacement of FM by 3%YH could improve antioxidant capability and intestinal microvillus morphology, as well as enhance the non-specific immunity of juvenile Jian carp.
Hyperglycemia-induced apoptosis and oxidative stress injury are thought to play important roles in the pathogenesis of diabetic nephropathy (DN). Attenuating high glucose (HG)-induced renal tubular epithelial cell injury has become a potential approach to ameliorate DN. In recent years, burdock fructooligosaccharide (BFO), a water-soluble inulin-type fructooligosaccharide extracted from burdock root, has been shown to have a wide range of pharmacological activities, including antiviral, anti-inflammatory, and hypolipidemic activities. However, the role and mechanism of BFO in rat renal tubular epithelial cells (NRK-52E cells) have rarely been investigated. The present study investigated the protective effect of BFO on HG-induced damage in NRK-52E cells. BFO could protect NRK-52E cells against the reduced cell viability and significantly increased apoptosis rate induced by HG. These anti-oxidative stress effects of BFO were related to the significant inhibition of the production of reactive oxygen species, stabilization of mitochondrial membrane potential, and increased antioxidant (superoxide dismutase and catalase) activities. Furthermore, BFO increased the expression of Nrf2, HO-1, and Bcl-2 and decreased the expression of Bax. In conclusion, these findings suggest that BFO protects NRK-52E cells against HG-induced damage by inhibiting apoptosis and oxidative stress through the Nrf2/HO-1 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.