The purpose of this study was to explore the relationship between and among the caregiver's personal factors, the care recipient's functional status, the caregiver's perceived self-efficacy, social support, reactions to caregiving, and health promotion behaviors in family caregivers of community-dwelling stroke patients in Taiwan. A structured home-interview survey methodology was used to collect data from 134 primary caregivers responsible for care of stroke patients in Taipei, Taiwan. The study results indicated that, in general, caregivers were female spousal caregivers (mean age 52 years, average caregiving period 24 months). Regression analyses revealed that the caregiver's health status was the strongest positive predictor of caregiver self-efficacy. Spousal caregivers with a better-perceived health status were more satisfied with their resources of social supports. Spousal caregivers with poor perceived health status had a higher level of caregiving strain. Results for the overall model indicated caregiver's social support and the care recipient's functional status made significant contributions in explaining the caregiver's health promotion behaviors. Implications for further practice suggest establishing community training programs and support groups for family caregivers.
Background Low differentiation rates of mesenchymal stem cells (MSCs) limit their therapeutic effects on patients in clinical studies. Our previous study demonstrated that overexpressing p130 or E2F4 affected the multipotential differentiation of MSCs, and the underlying mechanism was attributed to the regulation of the G1 phase. Improving the efficiency of MSC differentiation into epithelial cells is considered to be a new method. Therefore, this study was conducted to evaluate the effects of overexpressing p130 or E2F4 in MSCs on improving re-epithelization in lipopolysaccharide (LPS)-induced ARDS animals. Methods Mouse MSCs (mMSCs) stably transfected with p130 and E2F4 were transplanted intratracheally into LPS-induced ARDS mice. After 7 and 14 days, the mice were sacrificed, and the histopathology of the lungs was assessed by haematoxylin-eosin staining and lung injury scoring. Homing and differentiation of mMSCs were analysed by labelling and tracking mMSCs with NIR815 dye and immunofluorescent staining. Surfactant proteins A and C and occludin in the lungs were assessed by western blot. Permeability was evaluated by analysing the protein concentration of BALF using ELISA. Alveolar fluid clearance was assessed by absorbance measurements of BALF. Lung fibrosis was assessed by Masson’s trichrome staining and Ashcroft scoring. Results The engraftment of mMSCs overexpressing p130 or E2F4 led to attenuated histopathological impairment of the lung tissue, and the lung injury scores of the LPS+mBM-MSC-p130 and LPS+mBM-MSC-E2F4 groups were also decreased ( p < 0.05). Overexpression of p130 or E2F4 also increased the retention of mMSCs in the lung ( p < 0.05), increased differentiation into type II alveolar epithelial cells ( p < 0.05), and improved alveolar epithelial permeability ( p < 0.05). Additionally, mMSCs overexpressing p130 or E2F4 inhibited lung fibrosis according to the deposition of collagen and the fibrosis score in the lungs ( p < 0.05). Conclusion Overexpressing p130 or E2F4 in mMSCs could further improve the injured structure and function of epithelial cells in the lungs of ARDS mice as a result of improved differentiation of mMSCs into epithelial cells. Electronic supplementary material The online version of this article (10.1186/s13287-019-1169-1) contains supplementary material, which is available to authorized users.
Hyperglycemia is one of the most important pathogenesis of diabetic osteopathy. Several lines of studies indicate Runx2 plays a critical role in the process of osteogenic differentiation. However, little studies have analyzed the effect of Runx2 on osteoblast differentiation of rat bone mesenchymal stem cells (rBMSCs) in high-glucose condition. In this study, the effect of Runx2 on osteoblast differentiation in high-glucose condition was evaluated by the expression of osteogenesis-related maker including Runx2, ALP, OC, and OPN, as well as ALP staining, ALP activity, and Alizarin red S staining. Western blot analysis was performed to detect the protein expression levels of p-AKT, AKT, p-GSK3β, GSK3β, and β-catenin. Immunofluorescence staining analysis was performed to detect subcellular localization of β-catenin. Our results revealed that high glucose significantly inhibited osteogenic differentiation, hyperosmolarity did not cause a suppression. In addition, Runx2 could upregulate the expression of osteogenic-related genes and increase matrix mineralization, while applying 10 µM PI3K/AKT inhibitor LY294002 abolished the beneficial effect. Collectively, these results indicate that Runx2 alleviates high glucose-induced inhibition of osteoblast differentiation by modulating PI3K/AKT/GSK3β/β-catenin pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.