Carbon nanomaterials (CNMs), such as carbon nanotube (CNT) and graphene, are highlighted in bone regeneration because of their osteoinductive properties. Their combinations with nanofibrous polymeric scaffolds, which mimic the morphology of natural extracellular matrix of bone, arouse keen interest in bone tissue engineering. To this end, CNM were incorporated into nanofibrous poly(L-lactic acid) scaffolds by thermal-induced phase separation. The CNM-containing composite nanofibrous scaffolds were biologically evaluated by both in vitro co-culture of bone mesenchymal stem cells (BMSCs) and in vivo implantation. The nanofibrous structure itself demonstrated significant enhancement in cell adhesion, proliferation and oseogenic differentiation of BMSCs, and with the incorporation of CNM, the composite nanofibrous scaffolds further promoted osteogenic differentiation of BMSCs significantly. Between the two CNMs, graphene showed stronger effect in promoting osteogenic differentiation of BMSCs than CNT. The results of in vivo experiments revealed that the composite nanofibrous scaffolds had both good biocompatibility and strong ability in inducing osteogenesis. CNMs could remarkably enhance the expression of osteogenesis-related proteins as well as the formation of type I collagen. Similarly, the graphene-containing composite nanofibrous scaffolds demonstrated the strongest effect on inducing osteogenesis in vivo. These findings demonstrated that CNM-containing composite nanofibrous scaffolds were obviously more efficient in promoting osteogenesis than pure polymeric scaffolds.
Mechanical injury causes myelin disruption and subsequent axonal conduction failure in the mammalian spinal cord. However, the underlying mechanism is not well understood. In mammalian myelinated axons, proper paranodal myelin structure is crucial for the generation and propagation of action potentials. The exposure of potassium channels at the juxtaparanodal region due to myelin disruption is thought to induce outward potassium currents and inhibit the genesis of the action potential, leading to conduction failure. Using multimodal imaging techniques, we provided anatomical evidence demonstrating paranodal myelin disruption and consequent exposure and redistribution of potassium channels following mechanical insult in the guinea pig spinal cord. Decompaction of paranodal myelin was also observed. It was shown that paranodal demyelination can result from both an initial physical impact and secondary biochemical reactions that are calcium dependent. 4-Aminopyridine (4-AP), a known potassium channel blocker, can partially restore axonal conduction, which further implicates the role of potassium channels in conduction failure. We provide important evidence of paranodal myelin damage, the role of potassium channels in conduction loss, and the therapeutic value of potassium blockade as an effective intervention to restore function following spinal cord trauma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.