Castration-recurrent prostate cancer (CRPC) is suspected to depend on androgen receptor (AR). The AF-1 region in the amino-terminal domain (NTD) of AR contains most, if not all, of the transcriptional activity. Here we identify EPI-001, a small molecule that blocked transactivation of the NTD and was specific for inhibition of AR without attenuating transcriptional activities of related steroid receptors. EPI-001 interacted with the AF-1 region, inhibited protein-protein interactions with AR, and reduced AR interaction with androgen-response elements on target genes. Importantly, EPI-001 blocked androgen-induced proliferation and caused cytoreduction of CRPC in xenografts dependent on AR for growth and survival without causing toxicity.
Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries.
BackgroundLet-7a has been shown to play important roles in nasopharyngeal carcinoma (NPC) cell proliferation and apoptosis, but little is known about the function and mechanism of let-7a in nasopharyngeal carcinoma metastasis. We aimed to investigate the function and mechanism of let-7a in nasopharyngeal carcinoma metastasis and clarified the regulation of high mobility group A2 (HMGA2) by let-7a.MethodsThe expression levels of let-7a and HMGA2 were examined in NPC clinical specimens using quantitative reverse transcription-PCR (RT-qPCR). HMGA2 was confirmed as a target of let-7a through luciferase reporter assays, RT-qPCR, and Western blotting. Furthermore, the roles of let-7a and HMGA2 in regulating NPC cells biological properties including proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) process were analyzed with let-7a mimics and si-HMGA2 transfected cells.ResultsOur study demonstrated that let-7a was downregulated and inversely associated with the clinical stage, T classification and N classification, and HMGA2 was upregulated and directly associated with the clinical stage and N classification in patients with NPC. Moreover, there was an inverse correlation between let-7a expression and HMGA2 expression in NPC patient. In addition, HMGA2 was negatively regulated at the posttranscriptional level by let-7a via a binding site of HMGA2-3′UTR. In addition, synthetic let-7a mimics suppressed NPC cells migration, invasion and EMT process and knockdown of HMGA2 was consistent with the effects of let-7a in NPC cells.ConclusionLet-7a directly downregulates HMGA2 protein expression, which suppress NPC cell migration, invasion and EMT process. Let-7a could serve as a potential diagnostic marker and therapeutic target for NPC.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-015-0462-8) contains supplementary material, which is available to authorized users.
It is demonstrated experimentally and theoretically that through the use of an active (feedback) controller one can dramatically modify the nature of the flow in a toroidal thermal convection loop heated from below and cooled from above. In particular, we show how a simple control strategy can be used to suppress (laminarize) the naturally occurring chaotic motion or induce chaos in otherwise time-independent flow. The control strategy consists of sensing the deviation of fluid temperatures from desired values at a number of locations inside the loop and then altering the wall heating to either counteract or enhance such deviations. It is demonstrated experimentally and theoretically that through the use of an active (feedback) controller one can dramatically modify the nature of the flow in a toroidal thermal convection loop heated from below and cooled from above. In particular, we show how a simple control strategy can be used to suppress (laminarize) the naturally occurring chaotic motion or induce chaos in otherwise time-independent flow. The control strategy consists of sensing the deviation of fluid temperatures from desired values at a number of locations inside the loop and then altering the wall heating to either counteract or enhance such deviations. Disciplines Engineering | Mechanical Engineering
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.