In this paper, an adaptive neural control approach for a class of nonstrict-feedback nonlinear systems with unmodeled dynamic is presented. During the controller design process, the main difficulties arise from unknown functions and unmodeled dynamics, which are inevitable in practical applications. The unknown functions are approximated by utilizing the radial basis function neural networks' (RBF NNs) method, and for the problem of the unmodeled dynamics, a dynamic signal is introduced. The innovation of this paper is that we use the property of Gaussian functions to deal with the nonstrict-feedback form. Based on the above precondition, an adaptive NNs controller design scheme is developed by applying the backstepping recursive design. The proposed adaptive control approach guarantees that all the signals in closed-loop system are semi-globally uniformly ultimately bounded (SGUUB), and the tracking error converges to a small neighborhood around the origin by choosing appropriate parameters. In the end, a simulation example is provided to demonstrate the effectiveness of the proposed method.INDEX TERMS Adaptive control, backstepping, neural networks, nonlinear nonstrict-feedback systems, unmodeled dynamics.
In this paper, an adaptive intelligent control scheme is presented to investigate the problem of adaptive tracking control for a class of nonstrict-feedback nonlinear systems with constrained states and unmodeled dynamics. By approximating the unknown nonlinear uncertainties, utilizing Barrier Lyapunov functions (BLFs), and designing a dynamic signal to deal with the constrained states and the unmodeled dynamics, respectively, an adaptive neural network (NN) controller is developed in the frame of the backstepping design. In order to simplify the design process, the nonstrict-feedback form is treated by using the special properties of Gaussian functions. The proposed adaptive control scheme ensures that all variables involved in the closed-loop system are bounded, the corresponding state constraints are not violated. Meanwhile, the tracking error converges to a small neighborhood of the origin. In the end, the proposed intelligent design algorithm is applied to one-link manipulator to demonstrate the effectiveness of the obtained method.
For the receiver network with multiple DC feed-in, the DC locking fault seriously affects the safe and stable operation of the receiver network. This paper presents a frequency emergency coordinated control system which takes into account three measures: DC coordinated control, pumping and storage pump, and cutting off interruptible load. Two control strategies are developed, which are quick action from afar and frequency action on the spot. Both schemes have their own fault criteria. Finally, the two control strategies are analyzed and compared through the simulation of East China Power Grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.