Background
Iodinated and gadolinium-based contrast media (ICM; GBCM) induce immediate hypersensitivity (IH) reactions. Differentiating allergic from non-allergic IH is crucial; allergy contraindicates the culprit agent for life. We studied frequency of allergic IH among ICM or GBCM reactors.
Methods
Patients were recruited in 31 hospitals between 2005 and 2009. Clinical symptoms, plasma histamine and tryptase concentrations and skin tests were recorded. Allergic IH was diagnosed by intradermal tests (IDT) with the culprit CM diluted 1:10, “potentially allergic” IH by positive IDT with pure CM, and non-allergic IH by negative IDT.
Findings
Among 245 skin-tested patients (ICM = 209; GBCM = 36), allergic IH to ICM was identified in 41 (19.6%) and to GBCM in 10 (27.8%). Skin cross-reactivity was observed in 11 patients with ICM (26.8%) and 5 with GBCM (50%). Allergy frequency increased with clinical severity and histamine and tryptase concentrations (p < 0.0001). Cardiovascular signs were strongly associated with allergy. Non-allergic IH was observed in 152 patients (62%) (ICM:134; GBCM:18). Severity grade was lower (p < 0.0001) and reaction delay longer (11.6 vs 5.6 min; p < 0.001). Potentially allergic IH was diagnosed in 42 patients (17.1%) (ICM:34; GBCM:8). The delay, severity grade, and mediator release were intermediate between the two other groups.
Interpretation
Allergic IH accounted for < 10% of cutaneous reactions, and > 50% of life-threatening ones. GBCM and ICM triggered comparable IH reactions in frequency and severity. Cross-reactivity was frequent, especially for GBCM. We propose considering skin testing with pure contrast agent, as it is more sensitive than the usual 1:10 dilution criteria.
Aims: A molecular tool for extensive detection of prokaryotic alkane hydroxylase genes (alkB) was developed. AlkB genotypes involved in the degradation of short-chain alkanes were quantified in environmental samples in order to assess their occurrence and ecological importance. Methods and Results: Four primer pairs specific for distinct clusters of alkane hydroxylase genes were designed, allowing amplification of alkB-related genes from all tested alkane-degrading strains and from six of seven microcosms. For the primer pair detecting alkB genes related to the Pseudomonas putida GPo1 alkB gene and the one targeting alkB genes of Gram-positive strains, both involved in short-chain alkane degradation (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.