A new manufacturing process for (S)-3-(aminomethyl)-5-methylhexanoic acid (Pregabalin), the active ingredient in Lyrica, has been developed. Using Lipolase, a commercially available lipase, rac-2-carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester (1) can be resolved to form 2-carboxyethyl-3-cyano-5-methylhexanoic acid (2). A heat-promoted decarboxylation of 2 efficiently generates (S)-3-cyano-5-methylhexanoic acid ethyl ester (3), a known precursor of Pregabalin. This new route dramatically improved process efficiency compared to the first-generation process by setting the stereocenter early in the synthesis and enabling the facile racemization and reuse of (R)-1. The chemoenzymatic process also reduced organic solvent usage resulting in a mostly aqueous process. Compared to the first-generation manufacturing process, the new process resulted in higher yields of pregabalin (40-45% after one recycle of (R)-1), and substantial reductions of waste streams corresponding to a 5-fold decrease in the E factor from 86 to 17.
Monosubstituted phosphinic acids are esterified with orthosilicates in excellent yields. Phosphinylidene-containing acids react selectively under these conditions, while disubstituted phosphinic acids and phosphonic acids remain unchanged. One-pot procedures are also described for the preparation of phosphinate esters from an alcohol. This novel method provides a convenient and general alternative to more commonly employed conditions such as diazomethane or carbodiimide.
Highly efficient stereoselective syntheses of both (Z)-and (E)-γ-bisabolenes (1) were achieved by ring closing metathesis of stereodefined tetrasubstituted alkenes. Both (Z)-and (E)-tetrasubstituted alkene precursors were obtained by Cu-catalyzed stereoselective addition of allylmagnesium
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.