A SAR study on the tertiary alcohol series of phosphodiesterase-4 (PDE4) inhibitors related to 1 is described. In addition to inhibitory potency against PDE4 and the lipopolysaccharide-induced production of TNFalpha in human whole blood, the binding affinity of these compounds for the human ether-a-go-go related gene (hERG) potassium channel (an in vitro measure for the potential to cause QTc prolongation) was assessed. Four key structural moieties in the molecule were studied, and the impact of the resulting modifications in modulating these activities was evaluated. From these studies, (+)-3d (L-869,298) was identified as an optimized structure with respect to PDE4 inhibitory potency, lack of binding affinity to the hERG potassium channel, and pharmacokinetic behavior. (+)-3d exhibited good in vivo efficacy in several models of pulmonary function with a wide therapeutic index with respect to emesis and prolongation of the QTc interval.
Naphthalenic lignan lactone 3a (L-702,539), a potent and selective 5-lipoxygenase (5-LO) inhibitor, is extensively metabolized at two different sites: the tetrahydropyran and the lactone rings. Early knowledge of the metabolic pathways triggered and directed a structure-activity relationship study aimed toward the improvement of metabolic stability in this series. The best modifications discovered, i.e., replacement of the lactone ring by a nitrile group, replacement of the tetrahydropyran ring by a 6,8-dioxabicyclo[3.2.1]octanyl moiety, and replacement of the pendant phenyl ring by a 3-furyl ring, were incorporated in a single molecule to produce inhibitor 9ac (L-708,780). Compound 9ac inhibits the oxidation of arachidonic acid to 5-hydroperoxy-eicosatetraenoic acid by 5-LO (IC50 = 190 nM) and the formation of leukotriene B4 in human polymorphonuclear leukocytes (IC50 = 3 nM) as well as in human whole blood (IC50 = 150 nM). The good inhibitory profile shown by naphthalenenitrile 9ac is accompanied by an improved resistance to oxidative metabolism. In addition, 9ac is orally active in the functional model of antigen-induced bronchoconstriction in allergic squirrel monkeys (95% inhibition at 0.1 mg/kg).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.