Previous studies have demonstrated local functions for neurotrophins in the developing and mature testis of rodents. To examine whether these signaling molecules are present and also potentially active in the human testis, we characterized immunohistochemically the expression and cellular localization of the known neurotrophins and their receptors during prenatal testicular development as well as in the adult human testis. Results obtained revealed the presence of nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin-3 and 4, as well as neurotrophin receptors p75(NTR), TrkA, TrkB, and TrkC during testis morphogenesis. These proteins were also detectable in the adult human testis, and their local expression could be confirmed largely by immunoblot and RT-PCR analyses. Remarkably, the Leydig cells were found to represent the predominant neurotrophin/receptor expression sites within both fetal and adult human testes. Functional assays performed with a mouse tumor Leydig cell line revealed that NGF exposure increases cellular steroid production, indicating a role in differentiation processes. These findings support previously-recognized neuronal characteristics of Leydig cells, provide additional evidence for potential roles of neurotrophins during testis morphogenesis and in the mature testis, and demonstrate for the first time a neurotrophin-induced functional activity in Leydig cells.
Catecholamines play functional roles in the mature and developing mammalian testis but the cell types responsible for their local synthesis are still controversially discussed. Here, we demonstrate that four enzymes involved in the biosynthesis of catecholamines, namely, tyrosine hydroxylase (TH), aromatic amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DBH) and phenylethanolamine- N-methyltransferase (PNMT), are expressed in Leydig cells of the human testis. Tyrosine hydroxylase, the key enzyme of the biosynthesis of catecholamines, was localized to Leydig cells both at the transcript level (by RT-PCR analyses and by in situ hybridization assays) and at the protein level (by immunoblotting and by immunohistochemistry). The other enzymes were also demonstrated in Leydig cells by RT-PCR and immunohistochemical analyses. The presence of TH, AADC, DBH, and PNMT in human Leydig cells was found, in addition, by immunohistochemical approaches carried out on sections from prenatal human testes. Thus, the present study identifies the Leydig cells as the presumed sites of catecholamine production in both the mature and fetal human testes and further supports the previously recognized neuroendocrine characteristics of this cell type.
Previous studies in rats have shown that the ability of Leydig cells (LCs) to produce testosterone significantly declines with age. To address the possible mechanisms by which aging LCs lose their steroidogenic function, we determined the effect of aging on the expression of 11β-hydroxysteroid dehydrogenase (11β-HSD) type 2. The enzyme plays a protective role in blunting the suppressive effects of glucocorticoids on LCs steroidogenesis. Our immunohistochemical analysis revealed progressive decline in 11β-HDS type 2 expression in LCs of the 18 months of age rats and the most significant reduction in 11β-HSD2 immunoreactivity was evident in the testicular interstitium of 24-month-old rats. The decrease in the 11β-HDS type 2 immunostaining in LCs during aging coincided with decline in insulin-like 3/relaxin-like factor (INSL3/RLF) expression, an independent marker for LCs differentiation status. Concomitant with the age-related decrease of 11β-HDS type 2 immunoreactivity in the LCs population, the immunoexpression of 3β-hydroxysteroid dehydrogenase (3β-HSD), marker for LCs steroidogenic activity, was greatly reduced at 24 months compared to 3-month-old control. Similar pattern of expression exhibited also androgen receptor (AR) which is localized in the nuclei of Sertoli cells (SCs), LCs, and peritubular cells. During ages we observed progressive decrease in the immunoreactivity for AR in the testicular types and there was a loss of stage specificity in SCs at age of 24 months. It now seems evident that a variety of factors are likely to be involved in age-related decreases in LCs steroidogenesis, including 11β-HSD type 2. The observed reduction in 11β-HSD type 2 expression in aging LCs reflects the decline in their protection ability, opposing the suppressive effect of glucocorticoids on testosterone production.
The BDNF reduction in serum indicates a potential deficit in neurotrophic factor release in patients with schizophrenia and support the concept that BDNF might be associated with schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.