Stimulation of cell signaling cascades by oxidants may be important in the pathogenesis of pulmonary and pleural diseases. Here, we demonstrate in rat pleural mesothelial cells that apoptotic concentrations of crocidolite asbestos and H2O2induce phosphorylation and activation of extracellular signal-regulated protein kinases (ERK). Activation of c- jun-NH2-terminal protein kinases (JNK)/stress-activated protein kinases was also observed in response to H2O2. In contrast, asbestos caused more protracted activation of ERK without JNK activation. Both H2O2- and asbestos-induced activation of ERK was abolished by catalase. Moreover, chelation of surface iron from crocidolite fibers or addition of N-acetyl-l-cysteine prevented ERK activation and apoptosis by crocidolite, indicating an oxidative mechanism of cell signaling. The MEK1 inhibitor PD-98059 abrogated asbestos-induced apoptosis, confirming a causal relationship between ERK activation and apoptosis. These results suggest that distinct cell-signaling cascades may be important in phenotypic responses elicited by oxidant stresses.
This study demonstrates for the first time that respiratory epithelial cells are able to produce the acute phase protein lipopolysaccharide (LPS)-binding protein (LBP), which is known to play a central role in the defense to bacterial endotoxins (or LPS). Indications for local presence of LBP in human lung was obtained via reverse transcriptase/polymerase chain reaction that showed LBP messenger RNA (mRNA) expression. Therefore, LBP production by the human lung epithelial cell line A549, a human adenocarcinoma with features of type II pneumocytes, was studied. These cells produced LBP in response to interleukin (IL)-1beta, IL-6, and tumor necrosis factor- alpha, a response that was strongly enhanced by dexamethasone. In addition, LBP mRNA was detected in A549 cells, in increasing amounts as a result of stimulation. The pattern of cytokine-induced LBP production in A549 cells was similar to the pattern in the human liver epithelial cell line HuH-7. Moreover, the molecular weight of A549-derived LBP was approximately 60 kD, which is similar to HuH-7-derived LBP. Biologic activity of LBP produced by A549 cells was evaluated on the basis of its ability to interact with LPS. Further indications that type II alveolar epithelial cells are able to produce LBP were obtained from the observations that the murine lung type II epithelial cell line C10 produced murine LBP, and that isolated human primary type II pneumocytes expressed LBP mRNA, which was enhanced after stimulation of cells. The local production of this endotoxin binding protein by lung epithelial cells might contribute to a highly specific response at the site of exposure to bacteria and bacterial endotoxins.
To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation of pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.