Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort was made to reduce DEE and their content of carcinogenic and mutagenic polycyclic aromatic compounds. Since 1995 we observed an appreciable reduction of mutagenicity of DEE driven by reformulated or newly designed fuels in several studies. Recently, the use of rapeseed oil as fuel for diesel engines is rapidly growing among German transportation businesses and agriculture due to economic reasons. We compared the mutagenic effects of DEE from two different batches of rapeseed oil (RSO) with rapeseed methyl ester (RME, biodiesel), natural gas derived synthetic fuel (gas-to-liquid, GTL), and a reference diesel fuel (DF). The test engine was a heavy-duty truck diesel running the European Stationary Cycle. Particulate matter from the exhaust was sampled onto PTFE-coated glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The gas phase constituents were sampled as condensates. The mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Compared to DF the two RSO qualities significantly increased the mutagenic effects of the particle extracts by factors of 9.7 up to 59 in tester strain TA98 and of 5.4 up to 22.3 in tester strain TA100, respectively. The condensates of the RSO fuels caused an up to factor 13.5 stronger mutagenicity than the reference fuel. RME extracts had a moderate but significant higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. In conclusion, the strong increase of mutagenicity using RSO as diesel fuel compared to the reference DF and other fuels causes deep concern on future usage of this biologic resource as a replacement of established diesel fuels.
Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.