Levels of trace metals and essential minerals in selected fruit juice samples purchased from Minna were determined using atomic absorption spectrophotometer (AAS) and Flame photometer. From the obtained result, Cu, Fe, Mn, Na, and Zn were present in all the samples, while Cd, Pb, and Cr were not detectable in all the samples. Concentrations of K range between 1.31 ± 0.10 and 41.20 ± 0.10 mg/100 mL, Na between 15.47 ± 0.15 and 3.50 ± 0.20 mg/100 mL, Mn between Nd and 0.27 ± 0.08 mg/100 mL, Fe between Nd and 0.90 ± 0.05 mg/100 mL, Cu between Nd-0.60 ± 0.00 mg/100 mL, and Zn between Nd-0.09 ± 0.01 mg/100 mL, respectively. The trace metal levels in all the samples were within permissible limit as recommended by WHO for edible foods and drinks and could therefore be taken to compliment the deficiency of these essential minerals from other food sources.
Studies in this paper is focused on investigating the antimicrobial activity of the leaves extract of Hemizygia welwitschii plant. The chemical constituent of the extract was determined via phytochemical analysis. Thereafter, the antimicrobial screening of the extract was carried out on Staphylococcus aureus and Escherichia coli using Mueller Hinton agar method. The outcome of the phytochemical analysis reveals the presence of saponins (4.4 g), steroids (174 mg/100g), flavonoids (14.2 g), tannins (511 mg/100g), Phenol (2.04 mg/g), alkaloid (9.8 g) and anthroaquinones (3.6 g) in the extracts. Also, the result of the antimicrobial screening showed that the extract is more active against Staphylococcus aureus than Escherichia coli. Significant Inhibition of Staphylococcus aureus was observed at a concentration of 500 mg/ml. Thus, the continued use of the extract in the treatment of Staphylococcus aureus related diseases should be encouraged.
Samples of Jatropha curcas, a non-edible biodiesel plant, which tolerates harsh environments was collected from an industrial area with high anthropogenic activities (Challawa Industrial area, Kano, Nigeria)and sorted into leaves, stems and roots. The aim is to assess the potentials of Jatropha curcas in accumulation and translocation of six Potentially Toxic Elements (PTEs) (Zn, Cu, Cd, Cr, Pb and Ni) from the soil media. Atomic Absorption Spectroscopy (AAS) was used to assess the concentrations. The bioaccumulation/ transfer of metals from roots to shoots and from soil to roots were evaluated in terms of translocation (TF) and bioconcentration factor (BCF). TF values of 1.02, 4.92, 2.68, 3.73, 1.5 and 3.19 for Zn, Cu, Cd, Cr, Pb and Ni respectively indicate that J. curcas was efficient in translocation of PTEs from roots to shoots. This is an indication that the plant is therefore suitable for phytoextraction of Zn, Cu, Cd, Cr, Pb and Ni. But CF value of 0.66 and 0.70 for Cu and Pb on the other hand shows that J. curcas is less able to translocate these two metals (Cu and Pb) indicating ineffective transfer. This show that J. curcas may be suitable a candidate for phytostabilization of Copper and lead in contaminated soils in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.