One hundred and thirty SSR markers from wheat, maize and sorghum were screened for the transferability to Paspalum. The transfer rate was 67.5, 49.0 and 66.8% respectively. This would be a very efficient approach for DNA marker development for species which are not well studied molecularly. The polymorphism level for transferred SSR markers was 51.5% within species (Paspalum vaginatum) and 87.1% among Paspalum species. The high level of polymorphism is directly related to the high degree of heterozygosity maintained by its way of reproduction, i.e. self-incompatibility. Forty transferred polymorphic SSR markers were selected and used for characterization and evaluation of seventy-three Paspalum accessions. In total, 209 polymorphic bands were detected from these 40 SSR markers, with an average of five polymorphic bands per marker. The Paspalum accessions clustered into three major groups. Two very similar dendrograms can be generated from either 109 or 209 polymorphic bands. This led us to determine that 18 of the transferred SSR markers were sufficient for genetically differentiating the investigated germplasm accessions. The number of SSR markers required for germplasm characterization and evaluation is discussed. This is the first report of the transfer of SSR markers from major field crops to newly emerged environmental turfgrasses.
The genetic diversity of the genus Lespedeza is not well known and the phylogenetic relationship of Lespedeza with the genus Kummerowia is unclear. We report the first study in which polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers derived from Medicago, cowpea and soybean were used to assess the genetic diversity of the USDA Lespedeza germplasm collection and clarify its phylogenetic relationship with the genus Kummerowia. Phylogenetic analysis partitioned 44 Lespedeza accessions into three main groups some of which were species-specific and eight subgroups. This data set revealed some misidentified accessions, and indicated that the two species in the genus Kummerowia are closely related to the genus Lespedeza. Morphological reexamination was used to correct the misidentified accessions within the genus Lespedeza. Our results demonstrated that phylogenetic analysis with morphological reexamination provides a more complete approach to classify accessions in plant germplasm collection and conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.