Abstract. Measurements of organosulfates in ambient aerosols provide insight to the extent of secondary organic aerosol (SOA) formation from mixtures of biogenic gases and anthropogenic pollutants. Organosulfates have, however, proved analytically challenging to quantify, due to lack of authentic standards and the complex sample matrix in which organosulfates are observed. This study presents a sensitive and accurate new analytical method for the quantification of organosulfates based upon ultra-performance liquid chromatography (UPLC) with negative electrospray ionization mass spectrometry (MS) with the aid of synthesized organosulfate standards. The separation is based upon hydrophilic interaction liquid chromatography (HILIC) with an amide stationary phase that provides excellent retention of carboxy-organosulfates and isoprene-derived organosulfates. The method is validated using six model compounds: methyl sulfate, ethyl sulfate, benzyl sulfate, hydroxyacetone sulfate, lactic acid sulfate and glycolic acid sulfate. A straightforward protocol for synthesis of highly pure organosulfate potassium salts for use as quantification standards is presented. This method is used to evaluate the efficiency and precision of two methods of ambient PM2.5 sample extraction. Spike recoveries averaged 98 ± 8% for extraction by ultra-sonication and 98 ± 10% for extraction by rotary shaking. Ultra-sonication was determined to be a better method due to its higher precision compared to rotary shaking. Analysis of ambient PM2.5 samples collected on 10–11 July 2013 in Centreville, AL, USA during the Southeast Atmosphere Study (SAS) confirms the presence of hydroxyacetone sulfate in ambient aerosol for the first time. Lactic acid sulfate was the most abundant compound measured (9.6–19 ng m−3), followed by glycolic acid sulfate (8–14 ng m−3) and hydroxyacetone sulfate (2.7–5.8 ng m−3). Trace amounts of methyl sulfate were detected, while ethyl sulfate and benzyl sulfate were not. Application of this HILIC separation method to ambient aerosol samples further demonstrates its utility in resolving additional biogenic organosulfates.
Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and co-pollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from gram negative bacteria (and a few gram positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point towards wind-blown soil as an important source of bioaerosols in urban areas.
Abstract. Measurements of organosulfates in ambient aerosols provide insight to the extent of secondary organic aerosol (SOA) formation from mixtures of biogenic gases and anthropogenic pollutants. Organosulfates have, however, proved analytically challenging to measure. This study presents a sensitive new analytical method for the quantification of organosulfates based upon ultra-performance liquid chromatography with negative electrospray ionization mass spectrometry (UPLC-ESI-MS/MS). The separation is based upon hydrophilic interaction liquid chromatography (HILIC) with an amide stationary phase that provides excellent retention of carboxy-organosulfates and methyltetrol-derived organosulfates. The method is validated using six model compounds: methyl sulfate, ethyl sulfate, benzyl sulfate, hydroxyacetone sulfate, lactic acid sulfate, and glycolic acid sulfate. A straightforward protocol for preparation of highly pure organosulfate potassium salts for use as quantification standards is presented. This highly efficient method of separating and quantifying organosulfates is used to evaluate the efficiency and precision of two methods of ambient PM2.5 sample extraction. Spike recoveries averaged 98 ± 8% for extraction by sonication and 98 ± 10% for extraction by rotary-shaking. Sonication was determined to be the superior method for its better precision. Analysis of ambient PM2.5 samples collected 10–11 July 2013 in Centreville, AL, USA during the Southeast Atmosphere Study (SAS) confirms the presence of hydroxyacetone sulfate in ambient aerosol for the first time. Glycolic acid sulfate was the most abundant compound measured (ranging 8–14 ng m−3), followed by hydroxyl acetone sulfate (2.7–5.8 ng m−3) and lactic acid sulfate (1.4–2.9 ng m−3). Trace amounts of methyl sulfate were detected, while ethyl sulfate and benzyl sulfate were not detected. Future research will focus on the development of additional organosulfates standards, expansion of this UPLC-MS/MS to include more target molecules, and the application of this method to assess temporal variations in organosulfates in ambient environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.