The results of this observational, community-wide study suggest that neither the incidence nor the prognosis of cardiogenic shock resulting from acute myocardial infarction has improved over time. Both in-hospital and long-term survival remain poor for patients with this complication.
Summary. Megakaryocyte (MK) maturation culminates in release of blood platelets through proplatelet extensions. MKs presumably delay elaborating proplatelets until synthesis of platelet constituents is complete. Recent insights from investigation of a classic human congenital macrothrombocytopenia, the May-Hegglin anomaly, and related MYH9-associated disorders shed new light on underlying mechanisms. The findings reviewed in this article implicate myosin IIA, the nonmuscle myosin heavy chain product of the MYH9 gene, in restraining proplatelet formation until MKs achieve terminal maturity. Loss of myosin IIA function, through dominant inhibitory mutations in humans, targeted gene disruption in mice, or manipulation of cultured MKs, seems to accelerate proplatelet formation. The resulting process is inefficient and produces platelets that vary widely in size, shape and content. Several lines of evidence suggest that the Rho-ROCK-myosin light chain pathway restrains proplatelet formation through myosin IIA. These findings illustrate that mammalian thrombopoiesis is complex and subject to both positive and negative regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.