We present an exquisite 30 minute cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and continuing past peak brightness. These data are supplemented by multi-color Panoramic Survey Telescope (Pan-STARRS1) and Rapid Response System 1 and Cerro Tololo Inter-American Observatory 4 m Dark Energy Camera (CTIO 4-m DECam) observations obtained within hours of explosion. The K2 light curve has an unusual twocomponent shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic rise as seen for typical supernovae (SNe)Ia. This "flux excess" relative to canonical SNIa behavior is confirmed in our i-band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess peaks 2.14±0.04 days after explosion, has a FWHM of 3.12±0.04 days, a blackbody temperature of T 17, 500 9,000 11,500 =-+ K, a peak luminosity of 4.3 0.2 10 erg s 37 1 ´-, and a total integrated energy of 1.27 0.01 10 erg 43 ´. We compare SN 2018oh to several models that may provide additional heating at early times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance of ∼2 10 cm 12 based on our early color measurements, although the exact distance depends on the uncertain viewing angle. Additional confirmation of a companion interaction in future modeling and observations of SN 2018oh would provide strong support for a single-degenerate progenitor system.
We present near-IR (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2020oi in the galaxy M100 and the broad-lined SN Ic SN 2020bvc in UGC 9379, using Gemini, Las Cumbres Observatory, Southern Astrophysical Telescope, and other ground-based telescopes. The NIR spectrum of SN 2020oi at day 63 since the explosion shows strong CO emissions and a rising K-band continuum, which is the first unambiguous dust detection from an SN Ic. Non-LTE CO modeling shows that CO is still optically thick and that the lower limit to the CO mass is 10 −3 M e. The dust temperature is 810 K, and the dust mass is ∼10 −5 M e. We explore the possibilities that the dust is freshly formed in the ejecta, heated dust in the preexisting circumstellar medium, and an infrared echo. The light curves of SN 2020oi are consistent with a STELLA model with canonical explosion energy, 0.07 M e Ni mass, and 0.7 M e ejecta mass. A model of high explosion energy of 10 52 erg, 0.4 M e Ni mass, and 6.5 M e ejecta mass with the circumstellar matter reproduces the double-peaked light curves of SN 2020bvc. We observe temporal changes of absorption features of the IR Ca II triplet, S I at 1.043 μm, and Fe II at 5169 Å. The blueshifted lines indicate high velocities, up to 60,000 km s −1 for SN 2020bvc and 20,000 km s −1 for SN 2020oi, and the expansion velocity rapidly declines before the optical maximum. We present modeled spectral signatures and diagnostics of CO and SiO molecular bands between 1.4 and 10 μm.
Helium is expected to be present in the massive ejecta of some hydrogen-poor superluminous supernovae (SLSN-I). However, until now only one event has been identified with He features in its photospheric spectra (PTF10hgi). We present the discovery of a new He-rich SLSN-I, ZTF19aawfbtg (SN2019hge), at z=0.0866. This event has more than 10 optical spectra at phases from −41 to +103 days relative to the peak, most of which match well with that of PTF10hgi. Confirmation comes from a near-IR spectrum taken at +34 days, revealing He I features with P-Cygni profiles at 1.083 and 2.058μm. Using the optical spectra of PTF10hgi and SN2019hge as templates, we examined 70 other SLSNe-I discovered by Zwicky Transient Facility in the first two years of operation and found five additional SLSNe-I with distinct He-features. The excitation of He I atoms in normal corecollapse supernovae requires nonthermal radiation, as proposed by previous studies. These He-rich events cannot be explained by the traditional 56 Ni mixing model because of their blue spectra, high peak luminosities, and long rise timescales. Magnetar models offer a possible solution since pulsar winds naturally generate high-energy particles, potential sources of nonthermal excitation. An alternative model is the interaction between the ejecta and dense H-poor circumstellar material, which may be supported by observed undulations in the light curves. These six SLSNe-Ib have relatively low-peak luminosities (rest frame M g =−20.06±0.16).
The Peer-to-Peer (P2P) live video streaming system has been demonstrated to have great potential in the public Internet; the large-scale deployment of such systems, however, critically relies on how effective they can deal with the high dynamics encountered, in particular during flash crowd. The rationale behind is that the scaling in P2P live video streaming systems is heavily determined by the timing requirement that streaming applications demand. In this paper, we present an analytical and experimental study on the inherent relationship between the time constraint and the system scale. We develop a generic model for P2P live video streaming that focuses on the peer joining process during flash crowd. We first illustrate that the simple notion of "demand vs. supply" model is insufficient in describing the system scale. By computing the peer start-up time distribution, we demonstrate that the scale is affected by several key factors, especially the peer uploading capacity and the initial system size. We further show the scale is essentially bounded by the timing requirement and the system's capability to accommodate flash crowd is subject to a maximum limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.