Solid-state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here, we report a simple, scalable approach allowing for manipulation of the superconducting transition in optimally doped YBa2Cu3O7‑δ (YBCO) films via a chemically driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO. Progressive reduction of the superconducting transition is observed, with complete suppression possible for a sufficiently thick Gd layer. These effects arise from the combined impact of redox-driven electron doping and modification of the YBCO microstructure due to oxygen migration and depletion. This work demonstrates an effective step toward total ionic tuning of superconductivity in oxides, an interface-induced effect that goes well into the quasi-bulk regime, opening-up possibilities for electric field manipulation.
Uranyl peroxide minerals studtite (UO 2 O 2 •4H 2 O) and metastudtite (UO 2 O 2 •2H 2 O) are important materials in the nuclear fuel cycle. When heated, they dehydrate and transform to amorphous uranium oxides (UO x ), yet phase stability and heating rate dependence of these transformations are poorly understood. This information is critical to proper management of fuel cycle materials. In this work, we use in situ powder X-ray diffraction (PXRD), Raman spectroscopy, and thermogravimetric analysis (TGA) to monitor the dehydration of studtite and metastudtite. Strong linear correlation between the heating rate and phase transition temperature is observed. Geometric contraction and diffusion-related kinetic models describe studtite dehydration at slow heating rates, whereas Avrami−Erofeev or reaction order models become more accurate for faster thermal treatments. A second order model describes the transition from metastudtite to UO x regardless of the heating rate. Water retention during studtite dehydration is indicated by PXRD, Raman spectroscopy, and TGA. We observe mixed-phase UO x dehydration products of metastudtite with a likely formation mechanism involving conversion of some uranyl centers from hexagonal to pentagonal bipyramidal coordination units via peroxide liberation. Our observations clarify over 100 years of measurements on these materials and represent an advancement in understanding the chemical behavior of nuclear fuel cycle materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.