Mobile health (m-health) is the term of monitoring the health using mobile phones and patient monitoring devices etc. It has been often deemed as the substantial breakthrough in technology in this modern era. Recently, artificial intelligence (AI) and big data analytics have been applied within the m-health for providing an effective healthcare system. Various types of data such as electronic health records (EHRs), medical images, and complicated text which are diversified, poorly interpreted, and extensively unorganized have been used in the modern medical research. This is an important reason for the cause of various unorganized and unstructured datasets due to emergence of mobile applications along with the healthcare systems. In this paper, a systematic review is carried out on application of AI and the big data analytics to improve the m-health system. Various AI-based algorithms and frameworks of big data with respect to the source of data, techniques used, and the area of application are also discussed. This paper explores the applications of AI and big data analytics for providing insights to the users and enabling them to plan, using the resources especially for the specific challenges in m-health, and proposes a model based on the AI and big data analytics for m-health. Findings of this paper will guide the development of techniques using the combination of AI and the big data as source for handling m-health data more effectively.
Nowadays detection of deterioration of electrical motors is an important topic of research. Vibration signals often carry diagnostic information of a motor. The authors proposed a setup for the analysis of vibration signals of three-phase induction motors. In this paper rotor fault diagnostic techniques of a three-phase induction motor (TPIM) were presented. The presented techniques used vibration signals and signal processing methods. The authors analyzed the recognition rate of vibration signal readings for 3 states of the TPIM: healthy TPIM, TPIM with 1 broken bar, and TPIM with 2 broken bars. In this paper the authors described a method of the feature extraction of vibration signals Method of Selection of Amplitudes of Frequencies – MSAF-12. Feature vectors were obtained using FFT, MSAF-12, and mean of vector sum. Three methods of classification were used: Nearest Neighbor (NN), Linear Discriminant Analysis (LDA), and Linear Support Vector Machine (LSVM). The obtained results of analyzed classifiers were in the range of 97.61 % – 100 %.
A degradation of metallurgical equipment is normal process depended on time. Some factors such as: operation process, friction, high temperature can accelerate the degradation process of metallurgical equipment. In this paper the authors analyzed three phase induction motors. These motors are common used in the metallurgy industry, for example in conveyor belt. The diagnostics of such motors is essential. An early detection of faults prevents financial loss and downtimes. The authors proposed a technique of fault diagnosis based on recognition of currents. The authors analyzed 4 states of three phase induction motor: healthy three phase induction motor, three phase induction motor with 1 faulty rotor bar, three phase induction motor with 2 faulty rotor bars, three phase induction motor with faulty ring of squirrel-cage. An analysis was carried out for original method of feature extraction called MSAF-RATIO15 (Method of Selection of Amplitudes of Frequencies -Ratio 15% of maximum of amplitude). A classification of feature vectors was performed by Bayes classifier, Linear Discriminant Analysis (LDA) and Nearest Neighbour classifier. The proposed technique of fault diagnosis can be used for protection of three phase induction motors and other rotating electrical machines. In the near future the authors will analyze other motors and faults. There is also idea to use thermal, acoustic, electrical, vibration signal together.
The performance of assessment in medical image segmentation is highly correlated with the extraction of anatomic structures from them, and the major task is how to separate the regions of interests from the background and soft tissues successfully. This paper proposes a fuzzy logic based bitplane method to automatically segment the background of images and to locate the region of interest of medical images. This segmentation algorithm consists of three steps, namely identification, rule firing, and inference. In the first step, we begin by identifying the bitplanes that represent the lungs clearly. For this purpose, the intensity value of a pixel is separated into bitplanes. In the second step, the triple signum function assigns an optimum threshold based on the grayscale values for the anatomical structure present in the medical images. Fuzzy rules are formed based on the available bitplanes to form the membership table and are stored in a knowledge base. Finally, rules are fired to assign final segmentation values through the inference process. The proposed new metrics are used to measure the accuracy of the segmentation method. From the analysis, it is observed that the proposed metrics are more suitable for the estimation of segmentation accuracy. The results obtained from this work show that the proposed method performs segmentation effectively for the different classes of medical images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.