We demonstrate an experimental study of the chromatic dispersion properties for a series of microstructured fibers (MSFs) dedicated for a supercontinuum generation. With white-light interferometry application we analyze experimentally how the small variations of structural parameters, i.e. an air-hole diameter and a lattice constant, influence dispersion characteristics in different groups of MSFs. Our study provides useful information on how to design the fiber which is less sensitive to the fabrication imperfections. Moreover those investigations are the initial step to the development of the customized or tunable supercontinuum light sources based on MSFs with slightly changed structural parameters which can generate light with a different spectrum range, adapted to a proper application.
We present a multicore fiber dedicated for next generation transmission systems. To overcome the issue of multicore fibers' integration with existing transmission systems, the fiber is designed in such a way that the transmission parameters for each core (i.e., chromatic dispersion, attenuation, bending loss, etc.) are in total accordance with the obligatory standards for telecommunication single core fibers (i.e., ITU-T G.652 and G.657). We show the results of numerical investigations and measurements carried out for the fabricated fiber, which confirm low core-to-core crosstalk and compatibility with standard single-core single-mode transmission links making the fiber ready for implementation in the near future.
A concept of the Young interference experiment has been applied in the design of a fiber optic homodyne phase demodulator. The system is based on a bicell-photodetector in the Fourier plane. The above system has been designed, described, and verified together with an estimation of the minimization of phase measurement error in connection with the distance between photodetectors, wavelength, and focal length of the Fourier lens. The fundamental investigation concerning the choice of a distance between photodetectors and its influence on the demodulator's linearity has been presented and discussed as well.
In this paper we present an all-fiber vector bend sensor by means of a self-fabricated micro-structured multicore optical fiber. The reported solution is based on differential intensity variations of the light transmitted along the cores whose changes are influenced by the bending angle and orientation. The unique asymmetric structure of the air-holes in the optical fiber provides each core with different confinement losses of the fundamental mode depending on the bending radius and orientation, making each of the cores bend-sensitive in a range of at least 80°. It has been experimentally demonstrated that the reported sensor enables the bending angle and orientation to be detected in a full range of 360° without any dead-zones, and the possibility of end point detection with millimeter precision. Additionally, a reconstruction of the bending vector has been carried out theoretically, and a good match can be observed between the experimental and theoretical data.
In this work we would like to present the results of low loss coupling of a novel soft glass fiber for super continuum generation with standard single mode fiber by a filament splicing method. For our experiment we used an all solid soft glass microstructured fiber (MSF) made from a composition of F2 lead-silicate glass and NC21 borosilicate glass. The structure and material properties of the fiber were optimized to achieve all normal dispersion (ND) flattened around 1560 nm, which offers two general advantages for supercontinuum generation. The ND supercontinuum avoids soliton dynamics, hence it is less sensitive to pump laser shot noise and has larger degree of coherence than supercontinuum in the anomalous dispersion range. Furthermore flattening around 1560 nm indicates optimal supercontinuum pump wavelength, which is readily available from erbium doped femtosecond fiber lasers. Using Vytran splicing station (GPX3400) we were able to achieve repeatable splice loss between a standard fused-silica single mode fiber (SMF28) and the low-melting-temperature soft glass MSF as low as 2.12 dB @1310 nm and 1.94 dB @ 1550 nm. The developed very low loss splicing technology together with the above mentioned all solid soft glass MSF advantages give very promising perspectives for commercial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.