Low level laser therapy (LLLT) is defined as supplying direct biostimulative light energy to the cells. The wound healing process could be enhanced using low-level semiconductor diode lasers [1]. It has been reported that absorbed laser energy stimulates the molecules and atoms of the body's cells [2].While several studies have demonstrated that LLLT has stimulating effects on stem cells of the AbstractBackground. Experimental studies have shown that low level laser therapy (LLLT) has a positive local biostimulative effect in the early stage of bone healing. Platelet rich fibrin (PRF) also has been shown to be effective in the treatment of intrabony periodontal defects. Objectives. The objective of our experimental study was to demonstrate the combined effects of LLLT and PRF on bone healing. Material and Methods. Our experimental study was done over 80 bony cavities in 20 adult male rabbits, aged 12 months. An incision was made for exposure of the femur bone of all rabbits. Then, by using a large, round surgical bur, a perforated hole was made in the femur. The cavities induced in these rabbits were divided into 4 groups: The control group which was neither subjected to any laser irradiation nor filled with any bone substitute (group I); The bony defects were filled with PRF (group II); The cavities were subjected to low level laser (LLL) for biostimulation (group III); The cavities were subjected to LLL for biostimulation then were filled with PRF (group IV). Histological assessments of the four groups were done using a hematoxylin and eosin stain. Statistical analysis was done using ANOVA and Bonferroni tests for comparisons between the four groups.Results. The area percentage of the newly formed bone in group IV was significantly higher than the other three groups. The area percentage of the newly formed bone in group III is significantly higher than group II. Conclusions. LLLT could induce bone formation in the bone defect at a faster rate than PRF. However, a combination of both LLLT and PRF as treatment modalities could induce bone formation in the bone defect more than that of LLLT or PRF alone (Dent. Med. Probl. 2016, 53, 3, 338-344).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.