Patterned metal films have been shown to possess unique optical properties resulting from the excitation of surface plasmon polaritons at the patterned metal surface. Here we demonstrate spectrally selective thermal emission from patterned steel substrates. The materials and processes used in this work were chosen for their potential scalability to large-area and low cost production of metal films with distinct and designable thermal signatures. The samples studied were characterized by reflection and emission spectroscopy, and a factor of 2.6 emission enhancement is demonstrated for the design wavelength. These results are compared to numerical simulations.
Viscoplastic finite-element (FE) simulation is used to predict board-level solder joint reliability of ball grid array (BGA) packages under accelerated temperature cycling (ATC) conditions. The model is first validated against archived ATC data, then parametric studies are conducted to examine the model's sensitivity to changes in design factors and thenno-mechanical material properties. The use of the program Surface Evolver to predict BGA solder joint shape and profile is briefly discussed.
Methamphetamine (METH) is a highly addictive psychostimulant that has been shown to produce neurotoxicity. Methamphetamine increases the release of dopamine by reversing the direction of monoamine transporter proteins, leading to the formation of reactive oxygen species in the brain. In this study, we examined the effect of METH on DNA damage in vivo using the single cell gel electrophoresis assay (comet assay) under two different conditions. Rats treated with multiple doses of METH (10 mg/kg × 4) showed significant levels of DNA damage in the nucleus accumbens and striatum, both dopamine-rich areas. In contrast, a single dose of METH did not lead to significant levels of DNA damage in any of the dopamine-rich brain regions that were tested. Overall, the results of our study demonstrate that METH produces greater oxidative DNA damage in brain areas that receive greater dopamine innervation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.