Aims: Biosurfactants and bioemulsifiers commonly have the advantages of biodegradability, low toxicity, selectivity and biocompatibility over chemically synthesized surfactants. The goal of the study is to present a novel bioemulsifier with great application potential. Methods and Results: Aeribacillus pallidus YM‐1, isolated from crude oil contaminated soil, was found to produce a novel high molecular bioemulsifier with an emulsification index of 60 ± 1% without remarkable surface tension reduction (45·7 ± 0·1 mN m−1). The number‐average molecular weight was determined as 526 369 Da by gel permeation chromatography analysis. Bioemulsifier was subjected to FT‐IR and a complex of carbohydrates (41·1%), lipids (47·6%) and proteins (11·3%) was determined. Conclusions: The bioemulsifier of A. pallidus YM‐1 was isolated from the glucose‐based culture medium and characterized with the help of chemical analytical techniques. The bioemulsifier exhibited a promising emulsifying property for biotechnology application potential in bioremediation and microbial enhanced oil recovery. Significance and Impact of the Study: This is the first report of the bioemulsifier production by A. pallidus. The potential emulsifying activity of the bioemulsifier in the present study may be explored in various biotechnological and industrial applications.
— The hydrocarbon formation mechanism and potential targets in clastic strata from the Tabei Uplift, Tarim Basin, are documented using the fault mesh petroleum plays theory, based on integrating seismic, well log, well core, and geochemical data. The reservoirs in the Donghetang area are typical allochthonous and far-source fault mesh petroleum plays. There are two sets of fault meshes in the study area: (1) the combination of the Donghe sandstone and Permian–Triassic strata and (2) the combination of the fourth and third formations in the Jurassic strata. The fault mesh petroleum play in the Jurassic is a secondary reservoir that originates from the Carboniferous Donghe sandstone reservoir adjustment based on source correlation. The fault mesh carrier systems show the fully connected, fault–unconformity–transient storage relay, fault–transient storage–unconformity relay, and transient storage–fault relay styles, according to the architecture of the fault mesh. Based on the characteristics of the fault mesh petroleum plays, the reservoirs are divided into three categories (upper-, inner-, and margin-transient storage styles) and 15 styles. Integrated analysis of the hydrocarbon generation and faulting time periods reveals that there were four periods of hydrocarbon charging, with the first three stages charging the reservoirs with oil and the last stage charging the reservoirs with gas. There are multiple stages of reservoir accumulation and adjustment in the fault mesh in the study area. These stages of fault mesh accumulation and adjustment are the main reason why the reservoir distribution multiple vertical units have different hydrocarbon properties. Fault-block and lithologic reservoirs related to the inner- and upper-transient storage styles are the main exploration targets in the clastic strata in the study area.
TX 75083-3836, U.S.A., fax 01-972-952-9435.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.