Rice blast disease caused by Pyricularia oryzae is the most devastative disease. The alternative in rice blast disease management using foliar silicon (Si) application is gaining attention. The mechanism underlying defense-related enzyme induced through foliar Si application is still scarce. This research aimed to elucidate the bio-efficacy of foliar Si in inducing defense-related enzyme activity against P. oryzae in two aerobic rice cultivars: MR219-4 (blast-partially resistant) and MARDI Aerob 1 (resistant). Calcium silicate at 9 mg/L was foliar-sprayed and the disease severity index was evaluated and transformed to the area under disease progress curves (AUDPC). Foliar Si application significantly reduced rice blast disease severities in both cultivars tested. The AUDPC was reduced to 96.57 (MR219-4) and 21.90 (MARDI Aerob 1), from 148.57 (MR219-4) and
53.73 (MARDI Aerob 1). Plant defense-related enzymes: peroxidase (PO), polyphenol oxidases (PPO), and phenylalanine ammonia-lyase (PAL) were increased and might be associated to increase resistance. Also, there was a significant interaction (p=0.003) between rice cultivar and treatment to Si content in rice leaf. Thus, foliar application of Si in rice seedling underlined the important role of Si as a modulator in influencing plant defense-related enzymes with interacting with other stress signaling pathways leading to induce resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.