Aims. To investigate the efficiency of centrifugal acceleration of particles as a possible mechanism for the generation of ultra-high γ-ray nonthermal emission from TeV blazars, we study the centrifugal acceleration of electrons by rotating magnetic field lines, for an extended range of inclination angles and determine the maximum Lorentz factors γ max attainable by the electrons via this process. Methods. Two principal limiting mechanisms for the particle acceleration, inverse Compton scattering and breakdown of the beadon-the-wire approximation, are examined. Results. Particles may be centrifugally accelerated up to γ max 10 8 and the main limiting mechanism for the γ max is the inverse Compton scattering. Conclusions. The energy of centrifugally accelerated particles can be amply sufficient for the generation (via inverse Compton scattering) of the ultra-high energy (up to 20 TeV) gamma emission in TeV blazars.
Abstract. An investigation of the kinematics of a plasma stream rotating in the pulsar magnetosphere is presented. On the basis of an exact set of equations describing the behavior of the plasma stream, the increment of the instability is obtained, and the possible relevance of this approach for the understanding of the pulsar rotation energy pumping mechanism is discussed.
A novel model of particle acceleration in the magnetospheres of rotating active galactic nuclei (AGN) is constructed.The particle energies may be boosted up to 10 21 eV in a two step mechanism: In the first stage, the Langmuir waves are centrifugally excited and amplified by means of a parametric process that efficiently pumps rotational energy to excite electrostatic fields. In the second stage, the electrostatic energy is transferred to particle kinetic energy via Landau damping made possible by rapid "Langmuir collapse". The time-scale for parametric pumping of Langmuir waves turns out to be small compared to the kinematic time-scale, indicating high efficiency of the first process. The second process of "Langmuir collapse" -the creation of caverns or low density regions -also happens rapidly for the characteristic parameters of the AGN magnetosphere. The Langmuir collapse creates appropriate conditions for transferring electric energy to boost up already high particle energies to much higher values. It is further shown that various energy loss mechanism are relatively weak, and do not impose any significant constraints on maximum achievable energies.
A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e±) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.
Motion of test particles along rotating curved trajectories is considered. The problem is studied both in the laboratory and the rotating frames of reference. It is assumed that the system rotates with the constant angular velocity ω = const. The solutions are found and analyzed for the case when the form of the trajectory is given by an Archimedes spiral. It is found that particles can reach infinity while they move along these trajectories and the physical interpretation of their behaviour is given. The analogy of this idealized study with the motion of particles along the curved rotating magnetic field lines in the pulsar magnetosphere is pointed out. We discuss further physical development (the conserved total energy case, when ω = const) and astrophysical applications (the acceleration of particles in active galactic nuclei) of this theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.