A Nd:Cr:YVO4 crystal was grown by the Czochralski method for the first time to our knowledge. Its structure and cell parameter have been studied by X-ray powder diffraction (XRPD) analysis. Polarized absorption spectra were measured at room temperature, which showed that the absorption bands display polarization character and an absorption band of Cr5+ ions at 1110 nm enables the crystal to be a self-Q-switched laser material. We also found that the absorption of Cr5+ ions became much larger and its self-Q-switched laser performance became much better when the Nd:Cr:YVO4 crystal was annealed because the annealing induces more Cr ions to become those with + 5 valence. In the self-Q-switched laser, the maximum output power, shortest pulse width, and largest pulse energy were obtained to be 120 mW, 85.8 ns, and 0.79 μJ, respectively.
Thermal properties of a lowly Nd(3+)-doped disordered Nd:CNGG crystal have been symmetrically investigated. At room temperature, the specific heat, thermal diffusion coefficient and density were determined to be 0.595 J/g.K, 1.223 mm(2)/s and 4.718 g/cm(3), corresponding the thermal conductivity of 3.43 W/m.K. By measuring the thermal lens at different pump power, the thermal-optical coefficient was calculated to be 9.2x10(-6) K(-1) for the first time to our knowledge. All the thermal properties recovered that this material can be used in the moderate and even high pump power.
The origin of three kinds of scatter centers in KDP and DKDP crystals and their relations were investigated. The results have shown that solid inclusions will form liquid and gas inclusions in KDP (DKDP) crystals. The effect of scatter centers on Laser Damage Threshold of the crystals is not same because their sizes are different.
We measured the thermal properties of Nd:Lu₃Sc₁.₅Ga₃.₅O₁₂ (Nd:LuSGG) crystal, including the thermal expansion coefficient, specific heat, and thermal diffusion coefficient. The calculated thermal conductivity is 4.4 W/mK at room temperature. A high-power continuous-wave and passively Q-switched Nd:LuSGG laser was also demonstrated. Continuous-wave output power of 6.96 W is obtained which is the highest power with this material. For the first time to our knowledge, the passively Q-switched Nd:LuSGG laser is reported with the shortest pulse width, largest pulse energy, and highest peak power are achieved to be 5.1 ns, 62.5 μJ, and 12 kW, respectively. By spectral analysis, it has been found that the Nd:LuSGG laser was located at 1059 nm under low pump power, and became dual-wavelength at 1061.5 and 1059 nm when the incident pump power is over 2.27 W. The generating mechanism of dual-wavelength laser is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.