Graphene grown by thermal decomposition of a two-inch 6H silicon carbide (SiC) wafers surface was used to modulate a large energy pulse laser. Because of its saturable absorbing properties, graphene was used as a passive Q-switcher, and because of its high refractive index the SiC substrate was used as an output coupler. Together they formed a setup where the passively Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal laser was realized with the pulse energy of 159.2 nJ. Our results illustrate the feasibility of using graphene as an inexpensive Q-switcher for solid-state lasers and its promising applications in integrated optics.
We reported an efficient laser-diode (LD) end-pumped CW dual-wavelength Nd:YAG crystal laser operating at 1074 and 1112 nm simultaneously, for the first time to our knowledge. The maximum output power was 3.15 W with an optical conversion efficiency of 23.6%. Considering the broad absorption of carbonylhemoglobin and hemoglobin located at about 538 and 555 nm, respectively, we proposed that this dual-wavelength laser is an important source for detecting carbon monoxide poisoning by simple frequency doubling.
In this paper, we demonstrate the efficient 1.3 um dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser. With a plano-concave cavity, a maximum continuous-wave dual-wavelength output power of 5.92 W is obtained under an incident pump power of 20.5 W, giving a slope efficiency of 30.3% and an optical-optical conversion efficiency of 29.0%. With Co(2+):LaMgAl(11)O(19) crystal as the saturable absorber, the passively Q-switched dual-wavelength operation is achieved for the first time to our knowledge. The maximum passively Q-switched average output power is 226 mW, the minimum pulse width is 15 ns, and the highest pulse repetition rate is 133 kHz.
We reported graphene as a passive Q-switcher in a neodymium-doped lutetium vanadate (Nd:LuVO4) crystal laser. The maximum average output power, pulse repetition rate, and pulse width were 474 mW, 795 kHz, and 56.2 ns, respectively, with the graphene used as the passive Q-switcher by using its saturable absorbing property and with its substrate SiC used as the output coupler by using its high refractive index. Our results illustrate the feasibility of using graphene as a Q-switcher for solid-state lasers.
We demonstrate the direct generation of optical vortex pulses with stable energy and changeable orbital angular momentum. Single Laguerre-Gaussian (LG0,l) laser modes were directly generated using a laser diode with output intensity profile of doughnut distribution. With passive Q-switching, vortex pulses with stable energy were obtained. Moreover, the topological charge was changeable by variation of the pump power. By a mode-converter and second harmonic generation, the LG0,2l mode was identified. It can be proposed that this pulsed laser should have promising applications in various fields based on its compact structure, stable and high pulse energy, and changeable orbital angular momentum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.